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ABSTRACT 12 

We introduce an interpretable-by-design method, optimized model-analog, that integrates 13 

deep learning with model-analog forecasting, a straightforward yet effective approach that 14 

generates forecasts from similar initial climate states in a repository of model simulations. 15 

This hybrid framework employs a convolutional neural network to estimate state-dependent 16 

weights to identify initial analog states that lead to shadowing target trajectories. The 17 

advantage of our method lies in its inherent interpretability, offering insights into initial-18 

error-sensitive regions through estimated weights and the ability to trace the physically-based 19 

evolution of the system through analog forecasting. We evaluate our approach using the 20 

Community Earth System Model Version 2 Large Ensemble to forecast the El Niño–Southern 21 

Oscillation (ENSO) on a seasonal-to-annual time scale. Results show a 10% improvement in 22 

forecasting equatorial Pacific sea surface temperature anomalies at 9–12 months leads 23 

compared to the original (unweighted) model-analog technique. Furthermore, our model 24 

demonstrates improvements in boreal winter and spring initialization when evaluated against 25 

a reanalysis dataset. Our approach reveals state-dependent regional sensitivity linked to 26 

various seasonally varying physical processes, including the Pacific Meridional Modes, 27 

equatorial recharge oscillator, and stochastic wind forcing. Additionally, disparities emerge in 28 

the sensitivity associated with El Niño versus La Niña events. El Niño forecasts are more 29 

sensitive to initial uncertainty in tropical Pacific sea surface temperatures, while La Niña 30 

forecasts are more sensitive to initial uncertainty in tropical Pacific zonal wind stress. This 31 

approach has broad implications for forecasting diverse climate phenomena, including 32 

regional temperature and precipitation, which are challenging for the original model-analog 33 

approach. 34 

SIGNIFICANCE STATEMENT 35 

The purpose of this study is to demonstrate a skillful and interpretable approach for 36 

forecasting the El Niño–Southern Oscillation by combining deep learning and a simple 37 

analog forecasting method. A convolutional neural network is used to find critical areas for 38 

picking analog members. This is important because it is challenging to explain the decision-39 

making processes of recent deep-learning approaches. The developed approach can be 40 

applied to various climate predictions.  41 
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1. Introduction 42 

The prediction of climate variability over seasonal to interannual time scales greatly 43 

depends on the quality of El Niño–Southern Oscillation (ENSO) forecasts. The magnitude 44 

and pattern of tropical sea surface temperature (SST) anomalies associated with ENSO 45 

influence global climate through atmospheric teleconnections primarily driven by the Walker 46 

and Hadley circulations and stationary Rossby wave trains (Alexander et al. 2002; Hoell and 47 

Funk 2013; Capotondi et al. 2015; Taschetto et al. 2020). However, state-of-the-art 48 

atmosphere-ocean coupled models do not exhibit a substantial improvement over simpler 49 

linear models in predicting ENSO (Newman and Sardeshmukh 2017; Shin et al. 2021; Risbey 50 

et al. 2021). 51 

With recent progress in deep learning, several studies have applied various neural 52 

networks to ENSO prediction (Ham et al. 2019; Petersik and Dijkstra 2020; Cachay et al. 53 

2021; Chen et al. 2021; Ham et al. 2021; Zhou and Zhang 2023). Considering the data-54 

intensive nature of deep learning, long-term climate simulations from multiple models are 55 

often leveraged to capture nonlinear dynamics of ENSO and mitigate model-specific biases. 56 

While these data-driven models exhibit promising performance, interpreting their decision-57 

making processes poses a challenge due to the large number of hidden parameters. The 58 

interpretability of prediction models is crucial since models with better interpretability can 59 

enhance scientific understanding of physical processes, which can, in turn, improve 60 

prediction skill. Explainable artificial intelligence (XAI) is frequently used to elucidate neural 61 

network models in a post-hoc manner (e.g., Shin et al. 2022). However, different XAI 62 

techniques may yield different explanations for the same deep learning model (Mamalakis et 63 

al. 2022), and it remains challenging to explain complex models despite their superior 64 

accuracy in general. 65 

Analog forecasting is a simpler method which makes predictions based on similar states 66 

that occurred in the past, assuming they follow the attractor of the dynamical system (Lorenz 67 

1969a). While the sample size of historical records is too small to find good analogs for most 68 

climate-scale applications (Van den Dool 1989), simulated climate data allow for drawing 69 

“model-analogs” (Ding et al. 2018) from thousands of years of data. Because analog 70 

forecasting circumvents issues with initialization shock (Mulholland et al. 2015) by 71 

initializing directly in the model space, this method provides comparable skill to that of 72 
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coupled atmosphere-ocean models in forecasting seasonal tropical SST (Ding et al. 2018, 73 

2019). 74 

However, despite advances, finding reliable analogs within the chaotic climate system 75 

remains challenging due to both the limited sample size, even with thousands of years, and 76 

model imperfections leading to disparities between the model attractor and nature’s attractor. 77 

In chaotic systems, even tiny disturbances in initial states can lead to significantly divergent 78 

trajectories (Lorenz 1963, 1969b). Fig. 1b illustrates this issue, showing that a few model-79 

analogs, selected based only on minimal mean-square differences across the tropics, can 80 

evolve into the opposite phase of ENSO within 12 months. 81 

Alternatively, there may exist trajectories with slightly different initial conditions that 82 

remain closer to the true trajectory over some period of time (Grebogi et al. 1990; Judd et al. 83 

2004). Identifying these shadowing trajectories involves considering the sensitivity to initial 84 

conditions, with certain regions being more prone to initial errors while others are relatively 85 

insensitive (Errico 1997; Barsugli and Sardeshmukh 2002). For instance, the North Pacific 86 

Meridional Mode (NPMM) serves as one of key ENSO precursors (Chiang and Vimont 2004; 87 

Amaya 2019), driving the search for analogs that closely match over the NPMM region. 88 

Essentially, we aim to assign higher weights to initial-error-sensitive regions, thereby 89 

optimizing the selection of model-analogs so that their subsequent trajectories will more 90 

closely shadow the true trajectory. 91 

In this study, we introduce a deep learning method (specifically, a convolutional neural 92 

network) that predicts state-dependent weights for selecting “optimized model-analogs”. The 93 

combination of analog forecasting and machine learning has been investigated by several 94 

studies. Chattopadhyay et al. (2020) clustered surface temperature patterns into five groups 95 

and used a capsule neural network to predict the cluster indices based on states 1–5 days 96 

prior. Rader and Barnes (2023) introduced the idea of training a neural network to learn 97 

weights of a global mask to improve the selection of model-analogs for analog forecasting, 98 

and then used their mask to explore sources of predictability. However, their approach is 99 

state-independent and their forecasts struggle to predict extreme events.  100 

Here, we find a pattern of weights identifying where the model-analogs should most 101 

closely match each initial (target) anomalous state. That is, regions with higher weights are 102 

those where initial errors may have a greater impact on subsequent anomaly evolution. Fig. 103 
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1c illustrates that optimized model-analogs selected using predicted weights exhibit smaller 104 

error growth compared to the original model-analogs.  105 

Our forecasting method is an interpretable-by-design approach, blending deep learning 106 

with interpretable methods (Chen et al. 2019; Rudin 2019). We decompose the forecasting 107 

processes into two components: determining the best initial state matches and tracking 108 

subsequent evolution through the analog method. Specifically, this approach offers two key 109 

advantages in terms of interpretability. First, the estimated weights show regions where error 110 

growth is particularly sensitive to initial condition uncertainty. These weights (i.e., 111 

explanations by the network) are directly used for analog forecasting and integrated in the 112 

training process (ante-hoc), unlike the post-hoc explanations provided by XAI. Second, once 113 

analogs are identified using weights, we can trace the physically-based evolution of any other 114 

field available in the model simulation for any lead time. This is a key advantage of the 115 

model-analog technique that is unattainable with a standalone neural network unless it is 116 

trained for all variables.  117 

Our approach improves forecast skill of equatorial Pacific SST in both perfect-model and 118 

real-world experiments. While many machine learning-driven studies typically focus on 119 

predicting simple Niño indices (Ham et al. 2019; Petersik and Dijkstra 2020; Cachay et al. 120 

2021; Chen et al. 2021; Ham et al. 2021; Shin et al. 2022), we aim to improve the prediction 121 

of the spatial pattern of equatorial Pacific SST given the considerable diversity of individual 122 

ENSO events (Capotondi et al. 2015). Additionally, we explore the connection between the 123 

predicted weights and various physical processes associated with ENSO dynamics, including 124 

the asymmetry in initial-error-sensitivity for El Niño and La Niña. We describe our data and 125 

methods in Section 2, then evaluate forecast skill in perfect-model experiments in Section 3 126 

and real-world experiments in Section 4. In Section 5, we investigate initial-error sensitivity 127 

through estimated weights. The selection and effects of network size are discussed in Section 128 

6. Finally, Section 7 provides a summary of our results.  129 
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 130 

Fig. 1. Schematic method overview of the current study. (a) Reference initial condition 131 

for analog selection and target condition 12 months after. The black box in the target 132 

condition represents the equatorial Pacific, which is the focus area in this study. (b) 133 

Unweighted model-analogs and corresponding forecasts for the best and worst analogs. The 134 

mean square errors (MSEs) of the forecasts are shown in each panel. The scatter plot shows 135 

initial errors and forecast errors for all samples in the library, along with smoothed 136 

probability density curves. Blue circles show 10 analogs with the smallest initial errors. (c) 137 

As in (b), but for the optimized model-analogs which exhibit smaller error growth compared 138 

to the original analogs. This method uses deep learning to derive optimized weights for 139 

analog selection, displayed by contour lines. The scatter plot uses weighted initial errors on 140 

the x-axis. Green circles represent 10 optimized analogs, which may be compared to the 141 

original analogs represented by blue circles. 142 
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2. Methods 143 

a. Data 144 

We first evaluate the hybrid deep learning and model-analog approach within a perfect-145 

model framework, with the same model generating training, validation, and test datasets. We 146 

use an ensemble of historical simulations from the Community Earth System Model Version 147 

2 Large Ensemble (CESM2-LE; Rodgers et al. 2021). The CESM2-LE historical simulation 148 

consists of 100 ensemble members during 1850–2014, resulting in 16,500 years of data. We 149 

use monthly mean sea surface temperature (SST), sea surface height (SSH), and zonal wind 150 

stress (TAUX) data. These data are interpolated to two different resolutions, 2° × 2° and 5° × 151 

5°. The coarser resolution data are used to train the neural network model and to select 152 

analogs, while the finer resolution data are used as forecasts after finding analogs. Detrended 153 

anomalies are determined by removing the ensemble mean temporally smoothed with a 30-154 

year centered running mean. Throughout this study, we exclusively use anomalies. We 155 

partition the dataset into training (1865–1958; 9400 years, 70%), validation (1959–1985; 156 

2700 years, 20%), and test (1986–1998; 1300 years, 10%) subsets. The training dataset is also 157 

used as the library to select model-analogs. 158 

To test the trained model with observed estimates, we use the Ocean Reanalysis System 5 159 

(ORAS5; Zuo et al. 2019) interpolated to the fine and coarse resolution grids. This evaluation 160 

uses a fair-sliding anomaly approach that refrains from using future data not available at the 161 

time of the forecast (Risbey et al. 2021). Specifically, anomalies are determined by removing 162 

the mean and linear trend during the prior 30 years up to the year of the current forecast. Note 163 

that our model is not trained on any reanalysis data. 164 

b. Architecture of the optimized model-analog approach 165 

We develop a deep learning method to predict weights based on a specified initial 166 

condition. To reduce computational cost, we use the coarse resolution data over 50°S–50°N 167 

(13 latitudes × 72 longitudes × 3 variables) as our input. The architecture of the optimized 168 

model-analog approach is depicted in Fig. 2. Our chosen model is the U-Net (Ronneberger et 169 

al. 2015), a fully convolutional network consisting of a symmetrically designed 170 

downsampling encoder followed by an upsampling decoder. We also experimented with 171 

variations such as U-Net with residual blocks (He et al. 2015) and with attention gates (Oktay 172 

et al. 2018), but found minimal differences. 173 
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The encoder in our architecture consists of stacked blocks, each including two 174 

convolutional layers and a max pooling operation, halving the spatial resolution while 175 

doubling the channel size (i.e., last dimension). Mirroring the encoder, the decoder includes 176 

similar stacked blocks where each incorporates a transposed convolutional layer followed by 177 

two convolutional layers. This setup reverses the encoder's blocks by doubling the spatial 178 

resolution and reducing the channel size by half. Additionally, we use skip connections, 179 

which concatenate the features from the downsampling encoder into the decoder at the 180 

corresponding level. A final 1×1 convolution aligns the output channel size with the number 181 

of input variables.  182 

Two hyperparameters, namely depth and initial channel size, greatly influence the 183 

network size. Here, depth corresponds to the number of blocks in the encoder, set as 4 in this 184 

study. The initial channel size, set at 64 in our study, is the output channel size of the first 185 

encoder block. Either increasing the depth by one or doubling the initial channel size 186 

quadruples U-Net parameters. The sensitivity of the obtained results to the network size is 187 

discussed in Section 6. 188 

The U-Net predicts weights that are used to determine weighted initial distances from the 189 

input initial condition for every sample within the library. The library comprises all states 190 

from the training dataset of the corresponding calendar month, which introduces seasonal 191 

cycle effects. The weighted initial distance (𝑑!) between the target state and each library state 192 

is defined as the sum of weighted mean square errors (MSEw) of standardized SST, SSH, and 193 

TAUX anomalies over 50°S–50°N, 194 

𝑑! = MSE"(SST) + MSE"(SSH) + MSE"(TAUX)	, (1) 195 

where MSEw of the standardized anomalies is defined as: 196 

MSE" =
∑ 𝑤# cos𝜙# 7

𝑥#
𝜎$
− 𝑦#
𝜎%
<
&

#

∑ 𝑤# cos𝜙##
(2) 197 

Here, 𝑖 represents a spatial degree of freedom, 𝑤 represents the weight predicted by U-Net, 𝜙 198 

denotes latitude, cos𝜙 accounts for the grid area weight, 𝑥 represents the input initial state, 199 

and y represents each state in the library. Additionally, 𝜎$ and 𝜎% represent the square root of 200 

domain-averaged variance over the input domain, used for standardization purposes. Note 201 

that for 𝑤# = 1, 𝑑! is essentially the same as the distance metric used by Ding et al. (2018) to 202 

determine unweighted model-analogs. 203 
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The most intuitive training method might be selecting analogs with the smallest weighted 204 

initial distances and defining a loss function based on analog forecast errors. However, this 205 

approach involves the complex time evolution of the climate model, with unknown analytical 206 

derivatives. Thus, we opt for a more efficient strategy to update model parameters. 207 

Initially, the weighted initial distances are sorted, and samples with the lowest weighted 208 

initial distances are selected, specifically the top 2% of samples. We focus on these 209 

subsamples so that the network is not affected by samples that significantly deviate in initial 210 

conditions. As the network is updated and predicts different weights, a different set of 211 

subsamples is selected. Note that the sensitivity to the number of retained samples is 212 

relatively low. The loss function is defined as the mean-square-error (MSE) between the 213 

normalized weighted initial distances (𝑑!) and forecast errors (𝑑') of the chosen subsamples, 214 

where the forecast error is defined as the MSE of SST over the equatorial Pacific (10°S–215 

10°N, 120°E–70°W; black box in Fig. 1) at a certain lead time (𝜏). The loss function 𝐿( for 216 

the given initial condition (sample index 𝑘) can be expressed as: 217 

𝐿( =
1
𝑛)*+

CD
𝑑!,-

max
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𝑑!,-
−

𝑑',-
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-∈/
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&/!"#

-

(3) 218 

where 𝑗 represents the index of samples, 𝑛)*+ represents the number of subsamples, and 𝑛 219 

represents the number of samples in the library. The weighted initial distances and forecast 220 

errors are scaled by the respective maximums. Minimizing the loss guides the U-Net to 221 

estimate weights that prioritize samples with smaller forecast errors to have smaller weighted 222 

initial distances. Essentially, the objective is to maintain consistency in initial and forecast 223 

errors across the subsamples. This iterative process is executed for each sample in the 224 

training dataset, constituting one epoch.  225 

Although the U-Net can be trained for various lead times (𝜏), it then results in identifying 226 

different analogs for different lead times. This compromises one of the advantages of analog 227 

forecasting: the ability to track the time evolution of the system. To address this, we train the 228 

U-Net using forecast errors (𝑑') defined by the mean of MSEs across 3, 6, 9, and 12-month 229 

lead times over the equatorial Pacific. This approach yields comparable skill to training for 230 

specific lead times of 6, 9, or 12 months, as detailed in Appendix B. 231 
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 232 

Fig. 2. Architecture of the optimized model-analog approach. 233 

During each epoch, we monitor ensemble-mean forecast error at 12 months lead. Here, 234 

we choose 30 analog members (see Appendix A for details). The maximum number of 235 

epochs is capped at 60, and we use early stopping to prevent overfitting, i.e. training is 236 

stopped when the ensemble-mean forecast error in the validation dataset ceases to decrease. 237 

The Adam optimizer (Kingma and Ba 2017) is used to update network parameters. We train 238 

the model 10 times to account for the random initialization of U-Net parameters. Since 239 

analog selection is performed within the library of the corresponding month, we train a 240 

separate U-Net for each month. The source code is available on GitHub 241 

(https://github.com/kinyatoride/DLMA). 242 

c. Hyperparameter tuning 243 

Key hyperparameters considered in this study are the initial channel size, depth, learning 244 

rate, and subsample size. In the initial phase of hyperparameter tuning, we focus on January 245 

initialization with a lead time of 12 months. This choice is motivated by the largest ENSO 246 

variability observed during this month in the model. All hyperparameters are optimized based 247 

on ensemble-mean forecast error in the validation dataset with a 12-month lead time. 248 

Upon completing the tuning process, the same set of hyperparameters is adopted for other 249 

initialization months, except for the learning rate. Due to the significant impact of the 250 

learning rate, we fine-tune this parameter independently for each month. 251 

d. Unweighted model-analog and neural network-only approach 252 
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We compare our hybrid approach against both the original (unweighted) model-analog 253 

approach and an equivalent neural network-only approach. 254 

The original model-analog approach draws analogs based on unweighted distance (Ding 255 

et al. 2018, 2019; Lou et al. 2023). Here, distance is defined as the sum of MSEs of 256 

standardized SST and SSH over 30°S–30°N. MSE is similar to the formulation in Eq. (2) but 257 

with a constant weight (𝑤# = 1). The number of analog members is set to 30. In contrast to 258 

the hybrid method, distances are calculated using the 2° data since no training is required. 259 

TAUX and extratropical regions are omitted in this approach, as their inclusion has been 260 

found to degrade skill of the original model-analog approach. More discussion can be found 261 

in Appendix A. 262 

To address the question of whether combining deep learning and analog forecasting might 263 

degrade the deep learning capabilities, we compare with a neural network-only method using 264 

a similar architecture. We use the same U-Net architecture except for the final layer. The 265 

final 1×1 convolution is adjusted to generate fine-resolution SST fields over the equatorial 266 

Pacific. Consequently, this approach takes 5° SST, SSH, and TAUX fields over 50°S–50°N 267 

as input and predicts 2° SST over the equatorial Pacific. Given the discrepancy in dimension 268 

sizes between inputs and outputs, we apply additional padding and cropping of the data. The 269 

number of trainable parameters in this modified U-Net differs from the original by less than 270 

0.01%. While the initial channel size and depth are the same as the original, we tune the 271 

learning rate separately for this model. Note that this model is only evaluated for January 272 

initialization. 273 

e. Evaluation metrics 274 

We use root-mean-square error (RMSE) and uncentered anomaly correlation square 275 

(AC2) to assess the performance of ensemble-mean forecasts. AC2 is specifically defined as 276 

AC& = (max(AC, 0))&, ensuring that negative correlations are treated as zero. 277 

To test the statistical significance of the improvements achieved through the optimized 278 

analog approach over the unweighted approach, we conduct a one-sided permutation test 279 

(resampling without replacement) using the time-series of forecasts. The null hypothesis is 280 

that the true improvement is zero, which is rejected at the significance level of 5%. The null 281 

distribution is constructed through 10,000 permutations. When multiple hypotheses are 282 

simultaneously tested, as for a map of gridded data, Wilks (2016) recommends adjusting the 283 
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threshold p-value for the number of false discoveries. We use the Benjamini and Hochberg 284 

step-up procedure (Benjamini and Hochberg 1995) with a 5% false discovery rate. 285 

To evaluate the probabilistic skill, we use the continuous ranked probability score 286 

(CRPS), which corresponds to the integral of the Brier score over all possible threshold 287 

values. CRPS can be decomposed into three components: reliability, resolution, and 288 

uncertainty (Hersbach 2000). Reliability reflects the flatness of the rank histogram and 289 

resolution is linked to the ensemble spread. 290 

3. Forecast verification 291 

a. January initialization 292 

Fig. 3 shows perfect model skill using both unweighted and optimized model-analog 293 

methods for January initialization, with the test dataset spanning 1,300 years. The application 294 

of deep learning significantly enhances analog selection for forecasting SST patterns over the 295 

equatorial Pacific. RMSE is reduced by 10% for a lead time of 9–12 months (Fig. 3a), and 296 

AC2 of 0.4 is extended by more than 2.5 months (Fig. 3b). These improvements remain 297 

robust and are minimally affected by random initialization of the training, as indicated by the 298 

orange shade. However, for shorter lead times (i.e., 1–2 months lead), the optimized approach 299 

exhibits worse forecast errors, suggesting that the neural network assigns more weights to 300 

regions beyond the target area to select analogs with better forecasts in longer leads. 301 

Consequently, the unweighted approach, which allocates relatively more weights over the 302 

equatorial Pacific, results in lower forecast errors for shorter leads. 303 

To evaluate the contribution of the state-dependent aspect of weights to the observed skill 304 

improvements, Figs. 3a–b also present the skill of model-analogs selected using state-305 

independent mean weights, estimated by averaging the weights from all January 306 

initializations in the test dataset (shown in Fig. 9). Although model-analogs selected with the 307 

mean weights perform better compared to the unweighted approach, the improvements are 308 

not as significant as those achieved by the optimized approach, particularly at 6–15 months 309 

leads. This finding indicates that state-dependent weights are necessary to identify shadowing 310 

trajectories.  311 

Figs. 3c–d illustrate the spatial distribution of RMSE reduction and the increase in AC2 312 

achieved by the optimized approach. Skill is consistently improved east of the Maritime 313 

Continent, particularly around the Niño 3.4 region in the central equatorial Pacific. However, 314 
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over the Maritime Continent, neither RMSE nor AC2 exhibits significant improvements, 315 

primarily due to the small SST variability in the region and the use of MSE in the loss 316 

function. The hybrid approach enhances skill in the central equatorial Pacific, where 317 

unweighted model-analogs exhibit the highest skill (Ding et al. 2018). 318 

Although the optimized model-analog approach significantly improves analog 319 

forecasting, we might wonder whether a standalone neural network would produce better 320 

forecasts. Figs. 3a–b also display the forecast skill of the equivalent neural network-only 321 

method. It is important to note that this method can only generate forecasts at a single lead, so 322 

it must be separately trained for 3, 6, 9, and 12 months leads. While the neural network-only 323 

method exhibits better skill at 3 and 6 months leads, it demonstrates similar skill at 9 and 12 324 

months leads. With respect to AC2, the optimized model-analog approach shows better 325 

accuracy at these leads, where this approach exhibits largest improvements (see Appendix B). 326 

These results demonstrate that the combination of neural network and model-analog not only 327 

provides an advantage for tracking full-state evolution, but also yields comparable forecast 328 

skill compared to a neural network-only approach with a similar architecture and training 329 

efforts. 330 

 331 
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Fig. 3. Forecast skill comparison among the unweighted model-analog, optimized model-332 

analog, model-analog with the mean weights, and neural network-only approaches for 333 

January initialization using the test dataset. (a) Root-mean-square error (RMSE) of equatorial 334 

Pacific SST as a function of forecast lead. The black shading represents the 95% confidence 335 

interval estimated through the permutation test between unweighted and optimized results. 336 

The orange shading and blue error bars show the spread due to random initialization of 337 

network parameters. (b) Similar to (a), but for square anomaly correlation (AC2) averaged 338 

over the equatorial Pacific. (c) RMSE reduction (%) of 12-month lead SST by the optimized 339 

approach compared to the unweighted approach. (d) Similar to (c), but for the increase in 340 

AC2. In (c) and (d), color shading indicates statistically significant improvements at the 5% 341 

level with the 5% false discovery rate. 342 

b. All-month initialization 343 

Having tuned the hyperparameters for January initialization, we extend the application of 344 

the optimized model-analog approach to other initialization months. Fig. 4 shows the 345 

seasonal variation of perfect-model AC2 averaged over the equatorial Pacific. In general, 346 

optimized model-analog yields consistent impacts on analog forecasting across all 347 

initialization months. While the forecast skill tends to be reduced for shorter leads typically 348 

ranging from 0 to 3 months, as the neural network places more weights outside the target 349 

region, substantial improvements are made for longer leads ranging from 6 to 18 months. 350 

These improvements are particularly notable for initialization during boreal winter and spring 351 

(Nov–Apr), with verification during boreal fall and winter (Sep–Mar).  352 

 353 
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Fig. 4. The seasonality of square anomaly correlation (AC2) of SST averaged over the 354 

equatorial Pacific as a function of forecast lead. (a) The unweighted model-analog, (b) 355 

optimized model-analog, and (c) the difference between the two approaches. Stippling in (c) 356 

indicates statistically significant improvements. The verification month is indicated by the 357 

gray diagonal lines. 358 

 359 

Forecasting with analogs is by construction ensemble forecasting. The optimized model-360 

analogs lead to similar probabilistic skill improvements, with reduced skill for shorter leads 361 

and enhanced skill for longer leads. This is seen in Fig. 5 which shows the all-month 362 

probabilistic forecast skill (CRPS) using 30 analog members. CRPS of 0.4°C is extended for 363 

more than 1 month in the all-month average. The improvements in CRPS are attributable to 364 

improvements in resolution (Fig. 5c), which may be anticipated given that the loss function is 365 

designed to penalize samples deviating significantly at forecast leads, resulting in narrower 366 

ensemble spreads. However, smaller ensemble spreads can deteriorate the reliability 367 

component, associated with the flatness of the rank histogram, as appears to have occurred in 368 

our results (Fig. 5b). The rank histogram is the frequency of the rank of the verification 369 

relative to sorted ensemble members. In the absence of ensemble variability, the rank 370 

histogram tends to exhibit a U-shaped distribution (Hamill 2001). Since ensemble reliability 371 

was not explicitly considered in the loss function, this stands as one of the caveats in this 372 

study. 373 
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 374 

Fig. 5. (a) Seasonally-averaged continuous ranked probability score (CRPS) of SST over 375 

the equatorial Pacific as a function of forecast lead by the unweighted and optimized model-376 

analog methods. Similar to (a), but for (b) reliability and (c) resolution components of the 377 

CRPS.  378 

 379 

Once model-analogs are identified, forecasting can be extended to any field available in 380 

the climate simulation. This is a distinct advantage in analog forecasting not achievable solely 381 

with neural networks, where predictors and predictands must be carefully chosen based on 382 

specific phenomena targeted by the model and the available computational resources. Fig. 6 383 

shows the improvements in 12-month precipitation forecasting using the optimized model-384 
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analog. Precipitation forecasting is particularly improved in DJF (Fig. 6a), with significant 385 

improvements extending beyond the target region including the central subtropical Pacific, 386 

Maritime Continent, southwest Pacific east of Australia, southeastern US, northeastern 387 

Brazil, and north of Madagascar, potentially linked to ENSO teleconnections. Similarly, 388 

forecast skill in MAM is improved both within and outside the target region, albeit with 389 

smaller magnitudes (Fig. 6b). While precipitation forecast skill in JJA and SON also displays 390 

significant improvements, the impact is primarily confined within the target region (Figs. 391 

6c,d). It is essential to highlight that, while not always statistically significant, positive 392 

impacts on precipitation forecasting are observed in most regions across all seasons (not 393 

shown). This suggests that improving the model-analog forecasts of tropical SST contributes 394 

positively to global precipitation forecasting. 395 

 396 

Fig. 6. Increase in square anomaly correlation (AC2) of 12-month lead precipitation by 397 

the optimized approach compared to the unweighted approach. The forecasts are initialized 398 

and verified for (a) DJF, (b) MAM, (c) JJA and (d) SON. Color shading indicates statistically 399 

significant improvements at the 5% level with the 5% false discovery rate. 400 

4. Application to observations 401 

We next apply the developed optimized model-analog approach to make real-world 402 

hindcasts by finding optimized model-analogs for initial anomalies drawn from the ORAS5 403 

reanalysis dataset, using the same network but with a limited training epoch of 10 to prevent 404 
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overfitting to the CESM2 climate. Recall that we do not use any observations to train the 405 

optimized model-analog technique, nor do we employ transfer learning for these hindcasts. 406 

Fig. 7 shows the seasonal variation of hindcast skill during 1987–2020. The original 407 

(unweighted) model-analog shows lower skill than the perfect-model skill (Fig. 4) with a 408 

spring predictability barrier where skill sharply declines around March (Fig. 7a). The impact 409 

of the optimized approach varies across initialization months (Fig. 7c), in a manner that is 410 

broadly similar to its impact upon perfect model skill (Fig. 4c). However, although positive 411 

effects are observed in many initialization months, forecasts initialized in Aug–Oct display a 412 

decrease in skill. Statistically significant improvements are observed in boreal fall forecasts 413 

initialized in May and June, as well as in year 2 spring forecasts initialized in boreal winter. 414 

 415 

Fig. 7. Similar to Fig. 4, but for hindcast initialized during 1987–2020 using ORAS5. 416 

 417 

Fig. 8 illustrates the ENSO conditions under which prediction skill is improved for both 418 

perfect-model and observationally-based hindcasts, initialized in January for 12 months lead. 419 

It is evident that predictions of extreme events are improved, for both El Niño and La Niña 420 

conditions (Fig. 8a), due to their large influences in the loss function. Conversely, predictions 421 

for ENSO neutral conditions (below 0.5 σ) show no discernible impacts on the median skill. 422 

Although the sample size is small, a similar relationship is observed in the observationally-423 

based hindcasts (Fig. 8b). Apart from the La Niña event in 1996, the optimized approach 424 

reduces forecast error for all extreme events above 1 σ (darker shading). However, issues 425 

with model errors could also play a role. In Fig. 8a, the optimized approach significantly 426 
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improves extreme event forecasts, particularly those characterized by Niño 3.4 values much 427 

higher than historically observed values. This result suggests that the neural network may be 428 

learning some information with limited relevance to the real world.  429 

 430 

Fig. 8. Scatter plots of the RMSE reduction of SST over the equatorial Pacific and the 431 

Niño 3.4 index in the verification month for (a) the CESM2 test dataset and (b) ORAS5. The 432 

analysis focuses on 12-month forecasts initialized in January. Lighter pink/blue colors show 433 

values above 0.5 σ and darker pink/blue colors show values above 1 σ of the respective Niño 434 

3.4 index in CESM2 and ORAS5. In (a), the median and 90% lines are estimated by binning 435 

samples according to the Niño 3.4 index. In (b), the last two digits of verification years are 436 

displayed for extreme events.  437 

5. Interpretable weights 438 

The neural network in the optimized model-analog approach produces interpretable 439 

weights whose state-dependence significantly impacts forecast skill (Fig. 3) and which can be 440 

regarded as indicating sensitivity to initial uncertainty. As in XAI methods, these weights do 441 

not provide causal relationships. Instead, they highlight the regions and variables where it is 442 

particularly important for the model-analogs to match the initial target anomalies, which will 443 

thereby most effectively constrain subsequent anomaly evolution through both physical 444 

processes and correlated or dependent features. Fig. 9 illustrates the mean weights for four 445 

initialization months using the CESM2 test dataset. Recall that these weights improve 446 

forecasts at 6–18 months lead (Fig. 4). Generally, the weights are allocated to similar regions 447 

year-round. However, depending on the season, the relative magnitudes of weights differ, 448 

indicating varying importance of specific processes or regions. Notably, there are nonzero 449 
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weights outside the target region (equatorial Pacific SST, indicated by the black box), 450 

although most of the weights are distributed within the tropics (30°S–30°N), suggesting that 451 

extratropical contributions are relatively small. These distributions of weights result in 452 

selecting analogs with poorer initial match (yet better subsequent trajectories) over the target 453 

region than unweighted model-analogs. 454 

The distribution of weights among the three variables varies by calendar month, as shown 455 

in Fig. 10. From October to March, the weights are distributed relatively evenly between SST 456 

and SSH, with smaller weights for TAUX. April presents a deviation, with SST receiving the 457 

largest weights followed by SSH and TAUX. From May to September, the emphasis shifts, 458 

with TAUX receiving larger weights compared to SSH. Notably, TAUX receives the largest 459 

weights among all variables during June and July.  460 

The spatial distributions of weights reveal connections to various physical processes 461 

associated with ENSO. In January (Fig. 9a) and April (Fig. 9d), SST receives weights that 462 

extend southwestward from the California coast toward the western equatorial Pacific, as 463 

well as over the eastern equatorial Pacific. This pattern closely resembles the characteristics 464 

of NPMM (Chiang and Vimont 2004; Amaya 2019), a robust predictor of ENSO conditions 465 

(Penland and Sardeshmukh 1995; Larson and Kirtman 2014; Vimont et al. 2014; Capotondi 466 

and Sardeshmukh 2015; Capotondi and Ricciardulli 2021). We find that largest weights in the 467 

NPMM region occur from April to June (Fig. 11a), which is also when the NPMM typically 468 

is strongest. Additionally, the SST weights in the subtropical southeastern Pacific resemble 469 

the pattern of the South Pacific Meridional Mode (SPMM) (Zhang et al. 2014), particularly 470 

evident in January (Fig. 9a) and October (Fig. 9j). The air-sea coupling associated with 471 

SPMM peaks in boreal winter (You and Furtado 2018), again consistent with when the 472 

SPMM weights are maximized (Fig. 11b). Regarding the July initialization (Fig. 9g), SST 473 

weights concentrate more over the eastern equatorial Pacific. This reflects the timing of 474 

ENSO events in boreal winter and their influences on subsequent seasons, which are the 475 

target leads of the July initialization. 476 

SSH weights are consistently focused over the equatorial Pacific throughout the year, 477 

unlike SST (Figs. 9b, e, h, and k). Since SSH is dynamically linked to thermocline depth, this 478 

pattern likely relates to the recharge and discharge of upper-ocean heat content during the 479 

alternation of warm and cold ENSO phases (Jin 1997). In particular, a recharged state is 480 

conducive to the development of an El Nino, while a discharged state may likely lead to a La 481 
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Nina. The equatorial weights can constrain the zonal tilt of the equatorial thermocline 482 

concurrent with the peak of ENSO, in addition to the recharge-discharge mode which is an 483 

important precursor of ENSO (Meinen and McPhaden 2000). Notably, these weights are 484 

particularly amplified in April (Fig. 11c). Equatorial Pacific upper-ocean heat content 485 

typically precedes Niño 3.4 SST by a quarter of the ENSO cycle (McPhaden 2003), equating 486 

to about 8–10 months in CESM2 (Capotondi et al. 2020). Given that ENSO events tend to 487 

peak in boreal winter, the peak of weights in April is consistent with these established 488 

temporal dynamics. 489 

Winds play a crucial role in driving ENSO variability. TAUX weights tend to be largest 490 

in the western to central tropical Pacific throughout the year (Figs. 9c, f, i, and l), coinciding 491 

with the typical occurrence of stochastic wind forcing across the region. This stochastic 492 

forcing exhibits a broad spectrum ranging from subseasonal to interannual scales, with the 493 

lower frequency component often exerting a greater influence on ENSO evolution (Roulston 494 

and Neelin 2000; Capotondi et al. 2018). During boreal summer, the absence of the 495 

interannual component of stochastic wind can restrict ENSO growth (Menkes et al. 2014), 496 

elucidating the peak magnitude of wind weights observed in June (Fig. 11d). 497 

Although the target region lies within the tropical Pacific, allocation of weights to the 498 

Atlantic and Indian Ocean indicates the impact of tropical interbasin interactions (Cai et al. 499 

2019; Wang 2019). Interestingly, over the Atlantic Ocean larger weights are distributed to 500 

SSH compared to SST (Fig. 10). Our result suggests that ocean memory (i.e., upper ocean 501 

heat content) may serve as a more reliable proxy for Atlantic influences compared to SST, 502 

which measures surface heat. In contrast, large SST weights are observed over the Indian 503 

Ocean in January and April, near the Indian Ocean Dipole region. 504 
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 505 

Fig. 9. Mean weights for (a–c) January, (d–f) April, (g–i) July, and (j–l) October 506 

initialization in the CESM2 test dataset. These weights improve the selection of analogs for 507 

forecasts with lead times of 6–18 months. Weights are unitless and scaled to ensure a sum of 508 

100%. The sum of weights for each variable is displayed within each respective panel. 509 

Regions of interest, denoted by red (NPMM SST), blue (SPMM SST), green (equatorial 510 

Pacific SSH), and cyan (western to central tropical Pacific TAUX) boxes, are analyzed in 511 

Fig. 11. 512 
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 513 

Fig. 10. Seasonal variation of mean weights in the CESM2 test dataset. Red, blue, and 514 

green represent the total weights for SST, SSH, and TAUX, respectively. The intensity of 515 

light, medium, and dark colors indicates the sum of weights over the Indian, Pacific, and 516 

Atlantic Oceans, respectively. 517 

 518 
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Fig. 11. Seasonal variation of (a) SST weights over the NPMM region (10°S–30°N, 519 

175°E–85°W), (b) SST weights over the SPMM region (35°S–10°S, 180°–70°W), (c) SSH 520 

weights over the equatorial Pacific (2.5°S–2.5°N, 120°E–80°W), and (d) TAUX weights over 521 

the western to central tropical Pacific (10°S–10°N, 120°E–140°W), as observed in the 522 

CESM2 test dataset. Box plots depict the minimum, maximum, median, first and third 523 

quantiles, and outliers. 524 

 525 

Since weights are state-dependent, we can analyze the asymmetry in sensitivity associated 526 

with El Niño and La Niña. Fig. 12 shows the comparison of mean weights for events 527 

evolving to El Niño and La Niña 12 months later, initialized in January. Here, El Niño and La 528 

Niña events are defined by above and below ±0.5 σ of the Niño 3.4 index. The spatial 529 

distribution of weights generally exhibits similarities to the overall mean (Fig. 9a–c), but 530 

differences in magnitude can be observed. Specifically, the SST weights over the Pacific 531 

exhibit larger magnitudes for El Niño and weaker magnitudes for La Niña (Fig. 12g). 532 

Furthermore, Pacific TAUX weights, particularly along the NPMM region, are larger for La 533 

Niña (Fig. 12i). That is, El Niño prediction (from January to the following winter) is more 534 

sensitive to initial SST uncertainty, while La Niña prediction is more sensitive to initial 535 

surface wind stress uncertainty in the eastern equatorial Pacific. 536 

 537 

Fig. 12. Mean weights for events that evolve to (a–c) El Niño and (d–f) La Niña 538 

conditions in 12 months using January initialization. (g–f) The difference in mean weights 539 

between El Niño and La Niña. Color shading indicates statistically significant differences at 540 

the 5% level with the 5% false discovery rate. 541 



25 

File generated with AMS Word template 2.0 

6. Network size 542 

The complexity of a model, often indicated by the number of parameters, plays an 543 

important role in machine learning studies. Although the trend in the field leans towards more 544 

complex models with advanced skill, it is equally important to explore the potential gains 545 

achievable with simpler models, especially for those with resource constraints. As described 546 

in the Methods section, the network size is controlled by two key hyperparameters: depth and 547 

initial channel size. We employ a depth of 4 and an initial channel size of 256 in this study 548 

(referred to as 4-256), resulting in 123 million trainable parameters. This is determined 549 

through hyperparameter tuning and training cost considerations.  550 

Either reducing the depth by 1 or halving the initial channel size decreases the number of 551 

parameters by a factor of four. We found that reducing the depth degrades model 552 

performance more than reducing the initial channel size. This may be due to the reduction in 553 

the receptive field size, which represents the region in the input space influencing an output 554 

in a single grid, associated with decreasing depth. Since forecasting ENSO requires capturing 555 

large-scale teleconnections as illustrated in the estimated weights (Fig. 9), maintaining a deep 556 

network is imperative. Although it is tempting to have a deeper network, the current input 557 

size limits the depth to 4.  558 

Therefore, we conduct a sensitivity analysis by varying the initial channel size. Fig. 13a 559 

shows the reduction in RMSE on the validation dataset for different network sizes. As the 560 

network size increases, the skill improvement follows an asymptotic trend. Statistical tests 561 

reveal no significant difference between the 4-256 model and the 4-64 model, which has 16 562 

times fewer parameters. Yet, a significant difference is observed between the 4-512 and 4-64 563 

models (not shown). Hence, one needs to consider the trade-off between computational costs 564 

and model performance. 565 

The training duration for the 4-256 model is approximately 30 minutes and 1 hour with a 566 

single NVIDIA A100 and A6000 GPU, respectively (Fig. 13b). While the training time 567 

decreases with a smaller model, the difference diminishes for models with an initial channel 568 

size smaller than 128. This is due to the sorting of samples in the library, as shown in Fig. 2. 569 

With smaller networks, sorting time dominates, while larger networks exponentially increase 570 

training time. It is essential to note that actual training time and sensitivity to network size 571 

may vary depending on the system used.  572 
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 573 

Fig. 13. (a) RMSE reduction (%) of 12-month lead SST over the equatorial Pacific in the 574 

validation dataset for different network structures. The network structure is denoted by depth-575 

(initial channel size) with parameter counts in parentheses. Violin plots illustrate the null 576 

distribution estimated through permutation with the 4-256 model results. Gray shading 577 

indicates values are significantly different at a 5% level. (b) Approximate time taken to train 578 

U-Net models for 60 epochs using a single NVIDIA A6000 or A100 GPU in this study. 579 

7. Conclusion 580 

In this study, we introduce an interpretable-by-design forecasting approach called the 581 

optimized model-analog method, which integrates deep learning with model-analogs. We 582 

demonstrate how deep learning can enhance the potential of model-analog forecasting, 583 

specifically by identifying regions highly sensitive to initial uncertainty. The optimized 584 

model-analog approach yields comparable forecast skill to a standalone neural network 585 

approach, while offering additional benefits associated with analog forecasting. This 586 

approach generates interpretable, state-dependent weights that are used to select analog 587 

members. These estimated weights highlight regions that are particularly sensitive to initial 588 
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uncertainty. As a result, analogs selected with weighted distances shadow the target trajectory 589 

closer than original model-analogs. Additionally, the convolutional neural network employed 590 

in our study exhibits robust improvements across various network sizes. 591 

The application to ENSO forecasting shows significant improvements in perfect model 592 

skill at 6–18 months leads. The most significant improvements are observed in the central 593 

equatorial Pacific region and in predicting extreme events due to the large SST variability. 594 

Once optimized model-analogs are identified based on weighted distances, their subsequent 595 

time evolution can be analyzed in any fields available in the original climate simulation 596 

dataset. We demonstrate that improving equatorial Pacific SST forecasts also results in 597 

improving precipitation forecasting beyond the target region.  598 

We additionally show improvements in real-world applications across many initialization 599 

months and extreme events, although certain initialization months exhibit a reduction in 600 

forecast skill. Several factors contribute to the differences between real-world and perfect-601 

model results. Climate models inherently possess systematic errors, such as the excessive 602 

westward extension of the SST anomalies associated with ENSO (Bellenger et al. 2014), 603 

which is also evident in the CESM2 model (Capotondi et al. 2020) and in all seasonal climate 604 

model forecasts (Newman and Sardeshmukh 2017; Beverley et al. 2023). If the neural 605 

network learns a model attractor that is significantly different from reality, it can deteriorate 606 

skill. A potential solution to mitigate model biases involves employing multiple climate 607 

models, as demonstrated in model-analog studies (Ding et al. 2018, 2019; Lou et al. 2023), 608 

and machine learning studies (Ham et al. 2019; Zhou and Zhang 2023). Transfer learning 609 

may also alleviate biases, although with limitations due to sample size and the effects of 610 

climate change. Additional reasons for less significant results include a limited sample size, 611 

uncertainty in the fair-sliding anomaly calculation method, and uncertainty in the reanalysis 612 

dataset used both to choose initial model-analogs and to verify the subsequent hindcasts. 613 

Future work should address these challenges by mitigating the effects of model biases, 614 

potentially through the incorporation of multiple climate models and leveraging transfer 615 

learning techniques, and by developing hindcasts based on multiple different reanalysis 616 

datasets. 617 

The hybrid approach predicts weights linked to various known physical processes. 618 

Specifically, SST weights exhibit patterns similar to NPMM peaking in boreal spring and 619 

SPMM peaking in boreal winter. SSH weights are concentrated over the equatorial Pacific, 620 
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likely capturing states linked to the recharge-discharge of warm water volume associated with 621 

ENSO oscillatory behavior. TAUX weights are large in regions where stochastic wind 622 

forcing typically occurs, with a peak in boreal summer. Furthermore, some weights are 623 

distributed over the Atlantic and Indian Ocean, indicating the influence of the tropical 624 

interbasin interactions. These weights are generated by the neural network method used, 625 

implying that it is straightforward to integrate superior deep learning algorithms for improved 626 

weight quantification. 627 

Our approach mirrors the principles of adjoint sensitivity, where a linearized model is 628 

used to assess the sensitivity of a specific aspect of the final forecast to initial conditions 629 

(Errico 1997). While adjoint sensitivity is effective only under the validity of the linearized 630 

approximation, our approach accommodates nonlinear evolutions of analog trajectories. 631 

Additionally, our method can be viewed as a nonlinear and flow-dependent extension of 632 

singular vectors (Diaconescu and Laprise 2012) or optimal perturbations (Penland and 633 

Sardeshmukh 1995). These methods identify perturbations with maximum growth under a 634 

specific norm over a finite time interval. Despite the conceptual similarities, our approach 635 

stands out by not requiring a predefined target once trained when forecasting from a given 636 

initial condition.  637 

There are many possible applications of this approach. It can be used for different climate 638 

phenomena across various regions, such as regional temperature and precipitation. This has 639 

been challenging with the unweighted model-analog because the selection of input variables 640 

and input regions must be made for each target, which could be subjective. The optimized 641 

model-analog approach addresses this issue by optimizing the focus (i.e., weights) in the 642 

input space using neural networks.  643 

Another application is evaluating the regional and variable contributions to forecasting 644 

skill, including the assessment of interactions between the tropical basins. Broadly, two 645 

approaches can be considered: 1) training neural networks with restricted regions/variables, 646 

and 2) modifying (i.e., zeroing) predicted weights of certain regions/variables. The first 647 

approach may yield results that are difficult to interpret due to correlations between used and 648 

unused features. On the other hand, the latter approach involves post-modification after 649 

model training and selects analogs without constraining a part of the input. This approach 650 

could provide interesting insights into quantifying the contribution of a specific feature by 651 

allowing error growth from that feature.  652 
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APPENDIX 668 

Appendix A Unweighted model-analog 669 

This section presents the sensitivity of unweighted model-analog results to some 670 

parameters. Fig. A1a shows a skill comparison among different input regions and variables. 671 

The highest skill is achieved with SST and SSH over the tropics (30°S–30°N), as used in Lou 672 

et al. (2023). Expanding the input domain to the extratropics and including TAUX lead to a 673 

degradation in skill. Although the optimized model-analog approach assigns weights to the 674 

three variables over 50°S–50°N, we choose the one with SST and SSH over the tropics to 675 

avoid underestimating the skill of the unweighted approach. 676 

Fig. A1b shows the sensitivity to analog member size. RMSE clearly worsens with a 677 

member size of fewer than 10. We select a member size of 30, which minimizes RMSE at 678 

lead times of 6–12 months. 679 
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 680 

Fig. A1. (a) RMSE of equatorial Pacific SST as a function of forecast lead on the test 681 

dataset. Three unweighted model-analog approaches with different inputs are evaluated. (b) 682 

RMSE of equatorial Pacific SST as a function of forecast lead and analog member size. 683 

Appendix B Lead time dependence 684 

Fig. B1 shows a comparison of RMSE reduction using different forecast errors in the loss 685 

function. The model is trained with MSE at a specific lead time (3, 6, 9, or 12 months) in 686 

addition to using averaged MSE over 3, 6, 9, and 12 months leads. Note that the learning rate 687 

is fine-tuned independently. While the training results with a lead time of 3 months exhibit 688 

significantly different behavior, other results display more similarity. This tendency is also 689 

observed in the estimated weights, where the 3-month lead results focus more on the tropical 690 

Pacific (not shown). Among longer leads, the 6-month lead results yield the highest skill, 691 

especially for shorter leads. The results with the averaged MSE are slightly worse around 6-692 

month lead but generally comparable to the 6-month lead results. Considering the potential 693 

dependency on the initial month for training results at specific lead times, we use the 694 

averaged MSE in this study. 695 
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 696 

Fig. B1. RMSE reduction (%) of equatorial Pacific SST as a function of forecast lead for 697 

January initialization using the test dataset. The optimized model-analog is trained for various 698 

lead times. Shading shows the spread due to random initialization of network parameters. 699 
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