

Training datasets available from NOAA

Presenting Sergey Frolov NOAA/PSL

Credit to datasets goes to many people at NOAA

Presented at: Nov 28, 2023

What makes for a good training dataset?

Chantry 2023

- ERA5 has been exclusively used for all emulator training to date.
- What does it mean for the future of NOAA (and NCAR and DOE) models if we don't have comparable training datasets?

Outline

- What makes a good training dataset?
- History of reanalysis datasets at NOAA
- Recommended training datasets
- Future training datasets

What makes for a good training dataset?

- Homogenized data.
- High scientific quality of data.
- Constrained by observations.
- Ease of access (ARCO).

Well-maintained reanalyses (and ensemble reforecasts) are wellsuited for training of DL models

Recommendation for the future U.S. suite of reanalysis

- Reanalysis is limited by historic data availability.
- Recent workshop recommended a suite of reanalysis to maximize data impact.
- ERA5 is only a small part of the full suite of products.

Brief history of reanalysis datasets

- Over the last 3 decades, NOAA produced multiple reanalysis products.
- The latest three products (20CRv3, GEFSv12, UFS-replay) are recommended as ML training datasets.
- However, it is essential for NOAA to invest into a modern native reanalysis (e.g. UFS-R1)

Brief history of NOAA reanalyses datasets

- NCEP/NCAR-R1 (1995): One of the original reanalysis.
 - Still running in production 30 years later!!!
 - Not recommended for use
- CFSRv2 (2010): First coupled reanalysis
 - Still in production and operational
 - Not recommended for ML training
- 20CRV3 (2017): 200 years of reanalysis with 80 members
 - Best centennial reconstruction available.
 - By design not as accurate as ERA5 during modern period.
- GEFSv12 (2019): Designed for reforecast experiments
 - Best used for ensemble reforecasts (training and evaluation).
- UFSReplay (2023): "replay" of the coupled UFS model to ECMWF reanalyses
 - Recommended NOAA dataset for atmosphere, ocean, ice, and land ML training.

20CRv3: 200 years of reanalysis with surface pressure observations

Continuous reconstruction of weather:

- 80 ensemble members at 75km resolution
- Assimilated observations are limited to surface pressure measurements.
- 200 years of data.
- Available as file downloads.

GEFSv12 reforecast

Hamill 2004: At least 10-20 years of reforecast data is needed to effectively post-process forecasts of near surface quantities.

- Target audience: developing post-processing tools for real-time forecasts (configured similar to operational GEFSv12 but at a lower resolution).
- Fixed period of time (2000-2019) 80 members at 75 km resolution.
- 31 ensemble member forecast to 16 days 4x day, to 35 days 1x day.
- Available on AWS

UFS Replay

Replayed forecast forced by the increment

 Latest NOAA UFS model is replayed (nudged) to existing reanalysis (ERA5/ORAS5).

UFS Replay

- Latest NOAA UFS model is replayed (nudged) to existing reanalysis (ERA5/ORAS5).
- Latest model:
 - Atmosphere (FV3), latest atmospheric physics (HR1), MOM6, CICE6, NOAH-MP land, WWIII waves.
- Period:
 - 1994-present.
 - Output 3h on native model levels.
- Quality:
 - Indication of significant improvement over existing NOAA models.

ARCO storage

- Traditional files in traditional storage:
 - Great for on-disk access.
 - Terrible for internet access (e.g. ftp/S3).
 - Often can be behind a firewall or on tape.
- ARCO- analysis ready cloud optimized
 - E.g. zarr on the cloud.
 - Very efficient access to subsets of data through cloud-optimized chunking.
 - Originally a Python-native package.
- Training-ready dataset:
 - Specific to the configuration of the ML experiment.
 - Optimized for ingest into GPU/TPUs.
 - Typically has to be optimized by individual training teams.

Availability of UFS replay data

- Native model output:
 - AWS S3 (about 1 Pb).
 - https://noaa-ufs-gefsv13replay-pds.s3.amazonaws.com/index.html
- ARCO representation for training of model emulators:
 - Key dynamic and microphysics variables needed for training a model like GraphCast.
 - Atmosphere on gaussian grid and native model levels.
 - Ocean and ice on native (tri-polar) model grid and levels.
 - https://console.cloud.google.com/storage/browser/noaa-ufs-gefsv13replay
- ARCO representation for data science:
 - To be reformatted in Q1 2024 and stored on Azure.
 - Commonly used 2D variables (2mT, precipitation, 10m wind,).
 - Focused on coupled processes.

Other US-centric dataset

- Catalogue of NOAA data on AWS:
 - https://registry.opendata.aws/collab/noaa/
- AMIP runs from NOAA GFDL.
- GFS/GEFS operational analysis and ensemble forecasts
- Convective allowing datasets over CONUS
 - HRRR (3km) real-time products (back to 2014 with inconsistent versions).
 - CONUS404 (NCAR/USGS): 40 years at 4 km downscaling of ERA5.
- NOAA-NASA observational archive for reanalysis (1979-near real time).

NOAA-NASA observational dataset

- Observational inputs to the reanalysis.
- Covers a full range of observations for: atmosphere, ocean, ice, and land.
- Restricted data removed.
- Observations stored in non-ARCO files.
- Need a lot of curation and documentation to be useful to nonspecialists.
- Still been developed.

Possible future datasets

- Replay with nested model:
 - NOAA is developing a nested configuration of UFS that will allow replay generation with local refinement over CONUS (e.g. 13 or 3 km depending on configuration)
 - Some production is possible in the next 1-2 years

- UFS R1 native reanalysis with the NOAA UFS model and data assimilation
 - In development (production is possible in 2-3 years from now).
 - No computational resource is identified yet.
 - Effort under resourced (about ½ of the Copernicus investment into ERA6).
 - Prime opportunity for AI enhancements.

Concluding remarks

- NOAA has a wide variety of dataset for ML training:
 - Less organized compared to the Copernicus datasets (e.g. ERA5).
 - More modern access than Copernicus.
 - Varied degrees of quality.
- Opportunities for improvements:
 - Develop open ML ecosystem around existing NOAA data.
 - NOAA has to develop in-house expertise in ML model development and training using NOAA data to stay relevant.
- Essential need for NOAA-native reanalysis:
 - Should be produced with ML learning in mind.
 - Key link between NOAA science and any future implementation of AI emulators in operations.

Role of ML in the future reanalysis and NWP

- To date, reanalysis development was constraint by Moore's law.
- <u>Combination of hardware, software, and science is accelerating ML development</u> significantly faster than the Moore's law.
- Can reanalysis and data assimilation for NWP benefit from the acceleration in ML science?