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ABSTRACT

The ensemble transform Kalman filter (ETKF) ensemble forecast scheme is introduced and compared with
both a simple and a masked breeding scheme. Instead of directly multiplying each forecast perturbation with a
constant or regional rescaling factor as in the simple form of breeding and the masked breeding schemes, the
ETKF transforms forecast perturbations into analysis perturbations by multiplying by a transformation matrix.
This matrix is chosen to ensure that the ensemble-based analysis error covariance matrix would be equal to the
true analysis error covariance if the covariance matrix of the raw forecast perturbations were equal to the true
forecast error covariance matrix and the data assimilation scheme were optimal. For small ensembles (;100),
the computational expense of the ETKF ensemble generation is only slightly greater than that of the masked
breeding scheme.

Version 3 of the Community Climate Model (CCM3) developed at National Center for Atmospheric Research
(NCAR) is used to test and compare these ensemble generation schemes. The NCEP–NCAR reanalysis data for
the boreal summer in 2000 are used for the initialization of the control forecast and the verifications of the
ensemble forecasts. The ETKF and masked breeding ensemble variances at the analysis time show reasonable
correspondences between variance and observational density. Examination of eigenvalue spectra of ensemble
covariance matrices demonstrates that while the ETKF maintains comparable amounts of variance in all or-
thogonal and uncorrelated directions spanning its ensemble perturbation subspace, both breeding techniques
maintain variance in few directions. The growth of the linear combination of ensemble perturbations that max-
imizes energy growth is computed for each of the ensemble subspaces. The ETKF maximal amplification is
found to significantly exceed that of the breeding techniques. The ETKF ensemble mean has lower root-mean-
square errors than the mean of the breeding ensemble. New methods to measure the precision of the ensemble-
estimated forecast error variance are presented. All of the methods indicate that the ETKF estimates of forecast
error variance are considerably more accurate than those of the breeding techniques.

1. Introduction

Since ensemble forecasting was recognized as a prac-
tical way for providing probabilistic forecasts in the
early 1970s (Leith 1974), ensemble generation schemes
have been developed and used in weather prediction
centers, for example, the breeding method (Toth and
Kalnay 1993, 1997) used at the U.S. National Centers
for Environmental Prediction (NCEP), the singular vec-
tor method (Buizza and Palmer 1995; Molteni et al.
1996) applied at the European Centre for Medium-
Range Weather Forecasts (ECMWF), and the system
simulation method (Houtekamer et al. 1996) used at the
Canadian Meteorological Centre (CMC).
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Previous comparisons of the skills of these ensemble
generation schemes include that of Houtekamer and De-
rome (1995) who found that although these three en-
semble generation schemes are fundamentally different,
their medium-range ensemble mean error reduction
skills are quite comparable given that all initial pertur-
bations are centered around the control analysis. Hamill
et al. (2000) further studied the ensemble spread skill
of these three ensemble generation schemes. They found
that the singular vector and breeding methods produce
less skillful probabilistic forecasts than a variant of the
system simulation method known as the perturbed ob-
servation method.1 This is partly due to a stronger
spread–skill relationship in the perturbed observation
ensemble.

1 In the system simulation method uncertainties in both model phys-
ics and the initial condition error are accounted for.
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Compared to a single control forecast, an ensemble
forecast not only provides a more accurate estimate of
the first moment (the mean) of the probability density
function (PDF) of future atmospheric states, but also
provides higher-order moment estimations such as the
forecast error variance. Studies by Toth et al. (2001)
argued that the major extra information provided by
ensemble forecasts relative to a single control forecast
is that ensemble forecasts can estimate the case to case
variations in forecast uncertainty. Zhu et al. (2002) also
attributes much of the economic value of an ensemble
forecast to its ability to forecast regional and temporal
variations in forecast error variance. Thus, measuring
error variance prediction accuracy is an important cri-
terion in evaluating an ensemble forecast system.

The basic idea behind an ensemble generation scheme
is to generate independently perturbed initial conditions
such that the covariance of the ensemble perturbations
approximates the analysis error covariance matrix at the
initial time and thus the forecast error covariance matrix
at the forecast time. For an optimal data assimilation
scheme, the analysis error covariance matrix Pa and the
forecast error covariance Pf are related by

21a f f T f T fP 5 P 2 P H (HP H 1 R) HP , (1)

where the matrix H is the linear observation operator
that maps model variables to observed variables and the
matrix R is the observation error covariance matrix. The
notational convention in this paper is roughly consistent
with Ide et al. (1997). There are two major character-
istics in Eq. (1). First, the error variance reduction varies
with geographical variations of observation density and
accuracy. Second, error variance in directions with large
forecast error variance is reduced by a larger factor than
error variance in directions with small forecast error
variance is reduced (see appendix and/or Daley 1991);
in other words, data assimilation schemes use obser-
vations to filter out the most uncertain or ‘‘noisy’’ as-
pects of the forecast first-guess field. To provide ac-
curate estimate of Pa and Pf , an ensemble generation
scheme should be able to reflect these two character-
istics.

Of all ensemble generation schemes, the breeding
method is the most computationally inexpensive. A hy-
pothesis of the breeding method is that the important
part of analysis errors is the dynamically constrained
part contributed by errors of the forecast background.
In the simple form of the breeding method (Toth and
Kalnay 1993), forecast perturbations are transformed
into analysis perturbations by multiplying a globally
constant factor whose magnitude is less than one so that
the size of the scaled forecast perturbations is consistent
with the empirically estimated global analysis uncer-
tainty. Consequently, perturbation amplitude does not
reflect geographical variations in the observational net-
work density and accuracy nor does it reflect the fact
that data assimilation schemes reduce error variance in
directions corresponding to large error variance by a

larger factor than error variance in directions corre-
sponding to small error variance. To allow bred-pertur-
bation amplitude to reflect geographical variations in
the observational network, Toth and Kalnay (1997) in-
troduced a regional rescaling method where perturba-
tions at all levels are multiplied with a geographically
dependent rescaling factor. We shall refer to this more
sophisticated breeding scheme as ‘‘masked breeding.’’
While masking enables perturbation amplitude to reflect
geographical variations in observational density and ac-
curacy, it has a severely limited ability to make pertur-
bation amplitudes reflect the fact that data assimilation
schemes attenuate error variance in directions corre-
sponding to large forecast error variance more than in
directions corresponding to small forecast error vari-
ance.

The ensemble transform Kalman filter (ETKF) theory
was first introduced as an adaptive sampling method
(Bishop et al. 2001). It produces initial perturbations
consistent with the error covariance update equation (1)
within the vector subspace of ensemble perturbations.
Thus, one would expect the aforementioned two prob-
lems from the breeding scheme would be ameliorated
(see section 2c in detail). Different from other ensemble-
based Kalman filter (EnKF) theories that have been ex-
plored for data assimilation (Houtekamer and Mitchell
1998, 2001; Hamill and Snyder 2000; Hamill et al. 2001;
Whitaker and Hamill 2002; Anderson 2001), the ETKF
ensemble is used to estimate Pf only for predicting Pa,
not for updating the mean state. Thus, the control anal-
ysis used in the ETKF is potentially not as accurate as
the control analysis created in the EnKF data assimi-
lation schemes. However, the computational expense of
the ETKF ensemble generation is considerably less than
the EnKF ensemble.

To gain insight into the differences between the breed-
ing and ETKF ensemble generation schemes, it is help-
ful to first consider the types of perturbations each
scheme would produce in an idealized system for a time-
invariant linear dynamics, fixed observational network,
fixed observation error statistics, and no model error. In
such an system, forecast covariances at time tk is related
to analysis covariances at time tk21 by

f a TP 5 MP M ,k k21 (2)

where M is the linear dynamics operator. According to
Cohn and Dee (1988), in such a system the Kalman
filter asymptotically approaches a steady state when the
system is observable. Closed form solutions for the ex-
act error covariances that would be produced by infinite
time Kalman filter scheme for such a system are given
in Bishop et al. (2003, hereafter BRT). It demonstrates
that all nondecaying eigenvectors (or normal modes) of
M are required to precisely describe the forecast and
analysis error covariances in such a system with Kalman
filter for an infinite time. With a fixed dynamics prop-
agator, the simple breeding method is equivalent to the
power method for finding the eigenvector corresponding
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to the largest eigenvalue of M. Consequently, pertur-
bations produced by the simple breeding method would
all eventually point in the direction of the leading ei-
genvector (or normal mode) of M. Thus, for the simple
breeding ensemble, the rank of the ensemble-based sam-
ple covariance matrix would be limited to 1.2 From Cohn
and Dee (1988) and BRT, in such an idealized system,
error covariances started from any initial (at t0) estimate,
updated by Eq. (1), and propagated by Eq. (2), will
eventually (at t`) converge toward the error covariances
for an infinite time optimal scheme if the initial estimate
covers all amplifying normal modes that the true initial
analysis/forecast error covariance would cover. Since
the ETKF perturbations satisfy (1) and (2) in such an
idealized system, they would eventually (at t`) provide
a precise description of the forecast and analysis error
covariances that an infinite time optimal data assimi-
lation scheme would have if the ETKF initial ensemble
perturbations span the vector space of unstable normal
modes of the dynamics operator.3 Thus, the ETKF en-
semble would be expected to markedly outperform the
breeding ensembles in estimating the forecast/analysis
error covariances in such an idealized system. A com-
parison of the performance of the ETKF, the simple
breeding, and the masked breeding ensembles in an im-
perfect system where the dynamics propagator is im-
perfect and time-dependent and the number of ensemble
members is less than the number of growing normal
modes of the dynamics operator is the primary aim of
this paper.

A description of the ETKF and breeding ensemble
generation schemes is given in section 2. Section 3 pro-
vides a brief introduction of the model, the analysis data,
the observational network, and the specific construc-
tions of initial perturbations. Section 4 compares initial
perturbations in terms of effective rescaling factors. Sec-
tion 5 compares the dimension of the subspaces in which
ensemble variance is maintained. Section 6 compares
the maximal growth within ensemble perturbation sub-
spaces under the total energy norm. Section 7 compares
the ensemble forecast skills in terms of ensemble mean.
In section 8, we introduce methods to measure the error
variance prediction accuracy and perform comparisons
between the ETKF and breeding schemes. The com-
putational expense of the techniques is compared in sec-
tion 9. Section 10 summarizes our results.

2. Ensemble generation methods
a. Simple breeding

Following Toth and Kalnay (1993), a global constant
factor is applied to each raw forecast perturbation so

2 In cases where there were n . 1 eigenvectors corresponding to
the same largest eigenvalue, the rank would be limited by n.

3 In case not all amplifying normal modes of the linear dynamics
operator have errors initially, the statement is true when the ETKF
initial perturbations exclude these error-free amplifying normal
modes.

that the scaled perturbation has the same size as the
empirically determined global analysis root-mean-
square (rms) error. Mathematically,

a fx 5 x · c, (3)

where vectors xa and xf represent an analysis pertur-
bation and a forecast perturbation. Scalar c is a constant
globally for each raw perturbation. In our experiment,
the value of c for each forecast perturbation is chosen
so that 12-h ensemble forecast variance is consistent
with the 12-h control forecast error variance on a glob-
ally averaged basis. Details of the method for doing this
are given in section 2c and section 3d.

b. Masked breeding

The global constant factor c in Eq. (3) cannot reflect
the geographically dependent analysis uncertainty. The
masked breeding (Toth and Kalnay 1997) ameliorates
this problem with a regional rescaling factor. Mathe-
matically,

a fx 5 x c ,ij ij ij (4)

where and are elements in xa and xf at latitude ia fx xij ij

and longitude j. The mask is a function of latitude and
longitude whose values bound the vertically averaged
and horizontally smoothed ensemble perturbation am-
plitude. The amplitude for each ensemble perturbation
is measured under a user-specified norm that, in our
experiment, is the square root of vertically averaged
squared wind perturbations. Denote the mask as eij and
the vertically averaged and horizontally smoothed fore-
cast perturbation amplitude as . The rescaling factorfyij

is determined for each forecast perturbation as

f 1 y # eij i jc 5 (5)i j  eij f y . e .i j i jfy i j

The rescaling factor cij is only a function of latitude and
longitude. It applies to all variables at all levels. In our
experiments, an inflation factor is applied after (5) in
order to ensure that 12-h ensemble forecast variance is
consistent with the 12-h control forecast error variance
on a globally averaged basis (again, see below for de-
tails).

c. ETKF

The ensemble transform Kalman filter is a suboptimal
Kalman filter (Kalman 1960; Kalman and Bucy 1961;
Daley 1991) with the forecast error covariance matrix
estimated by the covariance matrix of the ensemble fore-
cast perturbations. As mentioned in the introduction,
compared to other ensemble-based Kalman filters, the
Pf estimated by the ETKF is not for updating the mean
state but only for estimating Pa.

Different from the breeding method that transforms
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forecast perturbations into analysis perturbations by
multiplying each forecast perturbation by a constant or
regional rescaling factor, the ETKF method transforms
forecast perturbations into analysis perturbations by a
transformation matrix T, that is,

a fX 5 X T, (6)

where forecast perturbations are listed as columns in the
matrix Xf and analysis perturbations are listed as col-
umns in the matrix Xa. In our experiment, since we use
one-sided perturbations, ensemble mean at the initial
time is degraded compared to the control analysis. So
in our one-sided ensemble system, we define analysis
and forecast perturbations as deviations from the con-
trol, that is, Xa 5 ( 2 , 2 , . . . , 2 ) anda a a a a ax x x x x x2 1 3 1 K 1

Xf 5 ( 2 , 2 , . . . , 2 ), where subscriptf f f f f fx x x x x x2 1 3 1 K 1

1 denotes the control and K is the number of ensemble
members including the control. The transformation ma-
trix T is chosen to solve Eq. (1) provided that

Tf f fP 5 Z (Z ) and (7)
a Tf T fP 5 Z TT (Z ) , (8)

where Zf 5 Xf / . Thus, if the covariance matrixÏK 2 1
of the raw forecast perturbations Xf were equal to the
true forecast error covariance matrix Pf , and the data
assimilation scheme were optimal, then the covariance
matrix associated with the transformed perturbations Xa

would be precisely equal to the true analysis error co-
variance matrix.

Following Bishop et al. (2001), T is given by

21/2T 5 C(G 1 I) , (9)

where columns of the matrix C contain the eigenvectors
of (Zf )THTR21HZf , and the nonzero elements of the di-
agonal matrix G contain the corresponding eigenvalues;
that is,

T 21f T f T(Z ) H R HZ 5 CGC . (10)

Since (Zf )THTR21HZf is a real symmetric matrix, its ei-
genvalues are real and its eigenvectors are orthogonal.
Note that the solution to (8) is nonunique. If Bi is a (K
2 1) 3 (K 2 1) matrix and Bi 5 I, then substitutionTBi

of Ti 5 TBi in place of T in (8) shows that Ti is also a
solution to (8). Differing Bi correspond to the differing
deterministic square root filters discussed in Tippett et
al. (2003), of which the ETKF is but a single example.
A distinguishing feature of analysis perturbations pro-
duced by the ETKF is that they are orthogonal in nor-
malized observation space. To see this, premultiply and
postmultiply (10) by T T and T, respectively, and sub-
stitute T on the right-hand side by (9). Then we obtain

T 21 21T f T fT (Z ) H R HZ T 5 G(G 1 I) . (11)

The right-hand side of (11) is a diagonal matrix. Thus,
from the definition of the ETKF analysis perturbations
in (6), the ETKF analysis perturbations are orthogonal
under the inner product defined by

21T{w; z} 5 wH R Hz, (12)

where w and z are any two vectors with the length of
a state vector. In other words, the analysis perturbations
over the observation sites normalized by the square root
of the observation error covariance matrix are orthog-
onal under a Euclidean norm. Note that after normali-
zation each element of the analysis perturbations over
the observation sites is dimensionless.

Because the ETKF rotates and rescales perturbations
according to the optimal data assimilation equation (1),
it is the distribution and quality of observations that
controls perturbation amplitude. Furthermore, consis-
tent with the filtering properties of an optimal data as-
similation scheme, ensemble variance in directions cor-
responding to large ensemble variance is reduced by a
larger factor than ensemble variance in directions cor-
responding to small ensemble variance is reduced (see
appendix and/or Daley 1991). Consequently, one would
expect the aforementioned problems of the breeding
methods to be ameliorated by the ETKF method. Ac-
cording to the discussion in the introduction about error
variance characteristics of the ETKF and breeding
schemes in an idealized system, one would also expect
that the ETKF ensemble perturbations to maintain var-
iance in a much wider range of amplifying directions
than the breeding ensemble perturbations.

When the number of ensemble perturbations is much
smaller than the number of directions to which the fore-
cast error variance projects, (8) significantly underes-
timates total analysis error variance because it lacks
contributions from important parts of the error space.
To ameliorate this problem, we multiply the transformed
perturbations by an inflation factor so as to ensure that
the global 12-h forecast ensemble variance is consistent
with the global control forecast error variance at the
rawinsonde sites. Denote ti as the perturbation initiali-
zation time. In our experiment, the time interval between
ti and ti11 is 12 h. We hope to find a scalar inflation
factor P i at time ti and multiply the transformed per-
turbation obtained at ti by Pi, that is,

a fX 5 X T P ,i i i i (13)

so that we could expect for the next 12-h forecast, name-
ly, at time ti11,

T e T˜ ˜trace(^d̃ d̃ &) 5 trace(HP H 1 I),i11i11 i11 (14)

where ^ · & represents the expectation operator; H̃ is the
observation operator normalized by the square root of
the observation error covariance matrix—that is, H̃ 5
R21/2H; is the 12-h ensemble covariance at ti11; andePi11

d̃i11 is the innovation vector at ti11 normalized by the
square root of the observation error covariance matrix—
that is, d̃i11 5 R21/2(yi11 2 H ), where yi11 is thefxi11

observation vector at ti11 and H is the 12-h back-fxi11

ground forecast valid at the time ti11 mapped into ob-
servation space by the observation operator H. Equation
(14) originates from the relationship among the inno-
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vation covariance, the forecast error covariance and the
observation error covariance with the assumption that
the forecast errors and the observation errors are un-
correlated. Here we adopt normalization by the obser-
vation rms error so as to lead dimensionless analysis
and reduce the difference in the variance of each in-
novation element. We also take the trace so that we only
consider the consistency of the ensemble variance with
the control forecast error variance on a globally aver-
aged basis. At each forecast time, we only have one
realization of the innovation vector. Fortunately, for the
global observational networks the number of indepen-
dent scalar innovations within the innovation vector is
large (Dee 1995). Consequently, the standard deviation
of d̃i11 is small compared to its mean. In this sense,Td̃i11

d̃i11 distributes closely around its mean valueTd̃i11

^ d̃i11&. Since ^ d̃i11& 5 trace(^d̃i11 &), d̃ i11
T T T Td̃ d̃ d̃ d̃i11 i11 i11 i11

provides useful estimates of trace(^d̃i11 &) in Eq. (14).Td̃i11

With this assumption, (14) becomes
T e T˜ ˜d̃ d̃ ø trace(HP H 1 I).i11i11 i11 (15)

Of course, d̃i11 and trace(H̃ H̃T 1 I) are not avail-T ed̃ Pi11i11

able at ti. To get around this problem, the inflation factor
Pi is obtained in our experiment by assuming that the
statistics of the next globally averaged 12-h forecast will
be similar to that of the previous 12-h forecast. Spe-
cifically, given that the inflation factor at ti21 was P i21,
the inflation factor at ti is obtained by first checking if

d̃i is equal to trace(H̃ H̃T 1 I). If not, we need toT ed̃ Pii

introduce a parameter a i so that
T e T˜ ˜d̃ d̃ 5 trace(Ha P H 1 I).ii i i (16)

Then the inflation factor P i is defined as

P 5 P Ïa . (17)i i21 i

From (16),
T Td̃ d̃ 2 N d̃ d̃ 2 Ni i i ia 5 5 , (18)i K21e T˜ ˜trace(HP H )i lO i

i51

where N is the number of observations, and li, i 5 1,
. . . , K 2 1 are the diagonal elements of G in (10). From
Eq. (17), P i is a product of these a parameters from
the first forecast at time t1 to that at time ti; that is,

P 5 Ïa a · · · a . (19)i 1 2 i

Although, at the first few initialization cycles, ai’s yield-
ed by (18) vary from order of 100 to order of 0.1 (e.g.,
for the 16-member ETKF ensemble a1 5 520.9, a2 5
1.4, a3 5 0.3, a4 5 0.8), after just 1 week of 12-h
perturbation initialization and forecast cycles, we found
that ai became stuck in a range of values between 0.8
and 1.2 with a mean of 1.0. This fast convergence con-
firms that the assumptions made in (15)–(17) are valid.

The way we calculate ai in (16) can be regarded as
an application and extension of the maximum likelihood
parameter estimation theory of Dee (1995). This can be

understood by noting that because the number of de-
grees of freedom of d̃i is large, the mean of its dis-Td̃i

tribution gets close to the peak of its distribution. Thus,
ai is the parameter to make this realization of d̃i theTd̃i

most likely. Finally, we note that, for our experiments,
we applied the same method (15)–(19) of selecting in-
flation factors to both the simple breeding and masked
breeding techniques.

3. Numerical experiment design

a. NCAR Community Climate Model

We use version 3 of the Community Climate Model
(CCM3) developed at National Center for Atmospheric
Research (NCAR). The details of the governing equa-
tions, physical parameterizations, and numerical algo-
rithms of CCM3 are presented by Jeffery et al. (1996).
We choose the default resolution of T42 and 18 levels.

b. The control analyses

In our experiment, for simplicity we use NCEP–
NCAR reanalysis data interpolated to T42 resolution as
the control analyses. ‘‘Control forecasts’’ are made from
these ‘‘control analyses.’’ The time period we consider
is the boreal summer in the year 2000. We also use the
reanalysis data as verifications for ensemble forecasts.

c. Observational network

We will be testing the performance of ensembles with
less than 17 members. Because our primary aim is to
simply illustrate how the ETKF combines observational
and dynamical information, and a 16-member ensemble
can only crudely represent the error reducing effect of
an observational network with O(105) observations, we
only employ a simplified observational network for this
study. Specifically, the observational network is as-
sumed to consist of measurements of u, y, and T (i.e.,
wind and temperature) at 200, 500, and 850 hPa at lo-
cations corresponding to actual rawinsonde sites (see
Fig. 1). We choose model grid points that are nearest
to the rawinsonde sites to represent the observation sites.
It is further assumed that observations are only taken
at 0000 and 1200 UTC. Our ‘‘observations’’ are taken
to be equal to the values of the reanalysis data at the
rawinsonde sites. These pseudo-observations represent
an estimate of the mean state of the atmosphere in the
grid cells corresponding to the observations. Because
the reanalysis data combines true observational data
with a dynamically produced first-guess field, the error
covariance of the grid-cell state estimates provided by
the reanalysis data is unlikely to be the same as the error
variance associated with the actual radiosonde obser-
vations. To estimate an upper bound on the error vari-
ance of the reanalysis data over the observation sites,
we first assume that CCM3 12-h forecast errors are un-
correlated with errors of the reanalysis data so that
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FIG. 1. Network of simulated rawinsonde stations. Black dots denote locations of
rawinsonde stations.

T f T^dd & 5 HP H 1 R, (20)

where R denotes the error covariance of the reanalysis
data in observation space and d is the innovation vector.
Second, we collect 12-h innovations by running a series
of 12-h control forecasts for the entire period of boreal
summer in 2000. We calculate innovation sample var-
iance for wind and temperature at each observation site
by averaging all the squared innovation in summer 2000
at that site. Then we choose the smallest wind and tem-
perature innovation sample variance as the observation
error variance for wind and temperature, respectively.
The rms wind and temperature observation errors ob-
tained are 2 m s21 and 0.78C, respectively. Note that
these rms errors are smaller than those typically attri-
buted to radiosonde observations in a data assimilation
scheme. For simplicity, we also assume there is no error
correlation between variables in the reanalysis data. Un-
der this assumption, the observation error covariance
matrix R is diagonal.

d. Construction of initial perturbations

In our experiment, we run 16-member one-sided en-
sembles for both the ETKF and the breeding methods.
We initialize ensemble forecasts at 0000 and 1200 UTC
during boreal summer of 2000. Fifteen forecast pertur-
bations at the analysis time are defined as the deviation
of the 15 12-h perturbed forecasts from the control fore-
cast. For the ETKF method, from these 15 raw forecast
perturbations we use Eqs. (9) and (10) to calculate the
15 3 15 transformation matrix. An inflation factor is
calculated as described in Eqs. (17) and (18). Then the
transformation matrix and the inflation factor are post-
multiplied to the raw forecast perturbations as in Eq.
(13) to obtain 15 initial perturbations. For the simple
breeding method, we first calculate a global constant
factor as in (3) for each perturbation so that the size of
each scaled perturbation is consistent with the size of
empirically determined global analysis rms error. We

also apply the inflation factor technique as in the ETKF
to the simple breeding technique. For the masked breed-
ing method, we choose the square root of the seasonally
and vertically averaged initial ensemble wind variance
from the 16-member ETKF ensemble (see Fig. 3a) as
a mask and smooth it with a spectral filter (Sardeshmukh
and Hoskins 1984). The mask eij used in Eq. (5) for our
experiments is shown in Fig. 2. The smoothing effect
we choose is equivalent to a triangular truncation of T6.
For each raw forecast perturbation the square root of
vertically averaged squared wind perturbations is cal-
culated and smoothed with the same spectral filter to
obtain yij in Eq. (5). Then the regional rescaling factor
is calculated as in Eq. (5). The inflation factor technique
is also applied to the masked breeding method. The
initial perturbations of the breeding methods are the raw
forecast perturbations multiplied by the rescaling factor
and the inflation factor. To initialize the next run, we
add the 15 initial perturbations directly to the control
analysis.

4. Comparison of initial ensemble variances

Figure 3 shows the square root of the seasonally and
vertically averaged initial wind error variance estimated
by the ETKF ensemble and the breeding ensembles. For
the ETKF ensemble (Fig. 3a), there is significant per-
turbation amplitude over the Southern Hemisphere but
quite small perturbation amplitude over the Eurasian
continent. This feature corresponds well to the geo-
graphical inhomogeneity of the observation density dis-
tribution in Fig. 1. For the simple breeding ensemble
(Fig. 3b), initial perturbations in the observation-scarce
Southern Hemisphere are much smaller than that of the
ETKF. Also, despite the high concentration of rawin-
sondes over the Eurasian continent, the simple bred-
vector initial perturbation amplitude is locally maxi-
mized in this region. The masked breeding ensemble
(Fig. 3c) is quite similar to the ETKF ensemble as far
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FIG. 2. The breeding mask, defined as smoothed square root of seasonally and vertically
averaged initial ensemble wind variance from 16-member ETKF ensemble. Label H indicates
local maximum. Contour interval is 0.2 m s21.

as the estimated average analysis uncertainty is con-
cerned.

The manner in which the ETKF has allowed ensemble
spread to be governed by observational density is better
seen by plotting maps of vertically and seasonally av-
eraged ratios of ensemble-based analysis rms wind error
over ensemble-based 12-h forecast rms wind error. Such
maps give a representation of the geographical distri-
bution of the factor that rescales 12-h forecast ensemble
spread into initial ensemble spread. Figure 4a displays
this ratio for the 16-member ETKF ensembles. The ef-
fective rescaling factor for the 16-member ETKF en-
semble not only reflects the high concentrations of ob-
servations over Europe and North America, but also
accounts for the smaller midlatitude concentrations over
South Africa, Australia, and South America. The cor-
responding plot for the simple breeding ensemble (Fig.
4b) shows an approximate constant that does not rep-
resent the spatial variation of the observation density
distribution. In Fig. 4c the rescaling factor for the
masked breeding ensemble is unable to appropriately
size the analysis errors differently between the mod-
erately observed continents and the sparsely observed
oceans in the Southern Hemisphere midlatitude. This
difference is due to the fact that the mask is smoothed,
as shown in Fig. 2, and thus relatively small observation
densities on Southern Hemisphere midlatitude land mas-
ses are neglected.

We also note that, in the Northern Hemisphere, the
masked breeding rescaling factor has an eastward phase
shift relative to the ETKF rescaling factor. This could
be due to the initial imbalance or rank deficiency of the
masked bred perturbations. In any case, the ETKF ten-
dency to place minima in rescaling factors on the eastern
boundaries of midlatitude data-sparse regions, that is,
west coasts of continents, is consistent with the fact that
optimal data assimilation schemes attenuate error var-

iance most in regions where the forecast error variance
is large relative to observation error variance (see ap-
pendix). The masked breeding ensembles positioning of
rescaling minima east of the eastern boundaries of mid-
latitude data-sparse regions is inconsistent with the way
one would expect an optimal data assimilation scheme
to reduce error variance.

Another striking difference is located in the Tropics,
where one observes local minima in east Africa, west
Indonesia and west South America in the masked breed-
ing while no such patterns appear in the corresponding
regions of the ETKF. These local minima suggest faster
equatorial disturbance growth in the masked breeding
ensemble than in the ETKF ensemble. Such equatorial
growth is typically attributed to interactions of Kelvin
waves, Rossby waves and convection along East African
and Andean mountain ranges (McPhaden and Gill 1987;
P. Roundy 2002, personal communication; Kleeman
1989). Could it be that masking has increased equatorial
wave sources within the perturbation subspace, thus in-
creasing the prominence of such growth within the
masked bred mode ensemble subspace? We speculate
that it has. The masking procedure does not obey any
known balance equations. Whenever masking is applied,
it is likely that some sort of balance inherent to the
system (e.g., midlatitude quasigeostrophic balance) will
be violated. Hamill et al. (2000) also discusses that the
use of the regional rescaling process introduces noises,
which results in spuriously large ensemble spread. In
contrast, since each ETKF analysis perturbation repre-
sents a linear combination of balanced forecast pertur-
bations [Eq. (6)], the ETKF analysis perturbations are
guaranteed to be in balance provided that 12-h forecast
perturbation amplitude is small enough for the tangent
linear approximation to be valid.

To further study the ability of the ETKF to allow the
ensemble spread to be governed by the geographical
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FIG. 3. Square root of seasonally (boreal summer in 2000) and vertically averaged ensemble
wind variance of initial ensemble perturbations for (a) 16-member ETKF ensemble, (b) 16-
member simple breeding ensemble, and (c) 16-member masked breeding ensemble. Label H
indicates local maximum. Contour interval is 0.3 m s21.
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FIG. 5. Seasonal mean spectra of eigenvalues of ensemble-based
12-h forecast covariance matrices normalized by observation error
covariance in observation sites for 16-member ETKF, simple breeding
and masked breeding ensembles.

inhomogeniety of the observation distribution, we also
ran an 8-member ETKF ensemble to see how the en-
semble size of the ETKF scheme affected the rescaling
factor. Figure 4d shows that over both hemispheres, the
rescaling factor of the ETKF 8-member ensemble is not
as detailed as that of the ETKF 16-member ensemble.
Also, the ETKF 8-member ensemble does not show the
land–sea contrast in the rescaling effect over Southern
Hemisphere midlatitudes as well as the ETKF 16-mem-
ber ensemble does. Essentially, this is because problem
of spurious long-distance correlations is worse for the
ETKF 8-member ensemble than it is for the 16-member
ensemble.

The superiority of the 16-member results over the 8-
member results indicates that the sensitivity of the ETKF
ensemble rescaling factors to variations in observational
density would be further improved by moving to a 32-
member ensemble. As the ensemble size increased, one
would have to include satellite observations in the ob-
servation operator in order to avoid the ensemble var-
iance becoming unrealistically large over the ocean ba-
sins. Spurious long-distance covariances associated with
small ensemble size are primarily responsible for the
lack of oceanic ensemble spread in the 8- and 16-mem-
ber results.

5. Maintenance of variance along orthogonal basis
vectors

As mentioned in the introduction, in a system with
fixed and perfect linear dynamics and fixed observation
distribution and error statistics, provided that the initial
ensemble perturbations span the vector subspace of un-
stable normal modes of the linear dynamics operator,
the ETKF ensemble would eventually maintain error
variance in all amplifying normal modes, whereas the
simple breeding technique would eventually only main-
tain error variance in the direction corresponding to the
most rapidly amplifying normal mode. To see whether
such profoundly different error variance maintenance
characteristics would be present with an imperfect time-
varying dynamics propagator and with the number of
ensemble members less than that of the growing normal
modes of the linear dynamics operator, we examine the
mean eigenvalue spectra of the ensemble covariance
matrices (see Fig. 5). For each ensemble generation
technique, heights of the 15 bars correspond to 15 sea-
sonally averaged diagonal elements of G in Eq. (10) for
12-h forecasts. The spectrum of the ETKF eigenvalues
is much flatter than that from both breeding methods.
There is nearly zero variance in the last six and three
uncorrelated and orthogonal directions for the simple
breeding and the masked breeding, respectively. In other
words, while there are large amounts of ensemble fore-
cast variance present in all 15 uncorrelated orthogonal
directions of the ETKF ensemble, nearly all of the en-
semble forecast variance is contained in a single direc-

tion for both the simple breeding and the masked breed-
ing.

The ETKF analysis perturbations are obtained by
solving the error variance update equation for an optimal
data assimilation scheme, that is, Eq. (1). From Eqs. (6)
and (9), forecast perturbations are first rotated and then
rescaled. The fact that the ETKF eigenvalue spectrum
is relatively flatter is due to the filtering effect of Eq.
(1) (see appendix). From Eq. (7), the ETKF estimated
forecast error covariance matrix at the observation sites
normalized by the observation error covariance is

21/2 21/2 Tf T f f˜ ˜HP H 5 R HZ (R HZ ) , (21)

where H̃ 5 R21/2H. Define E 5 H̃ZfCG21/2, then (21)
becomes

f T T˜ ˜HP H 5 EGE . (22)

Because ETE 5 I (but EET ± I), (22) is an approximate
eigenstructure expression for the estimated H̃PfH̃T. From
Eqs. (6) and (9), and the definition of E, the ETKF
analysis perturbation in the observation space normal-
ized by the square root of R before applying the inflation
factor is

1/2 21/2aH̃Z 5 EG (G 1 I) . (23)

Equation (23) shows that the ETKF analysis perturba-
tions point in the same directions as the eigenvectors of
the estimated forecast error covariance matrix H̃PfH̃T.
From (23) the ETKF estimated analysis error covariance
matrix at the observation sites is

21a T T˜ ˜HP H 5 EG(G 1 I) E , (24)

which is consistent with (A5) in the appendix. Com-
paring (22) and (24), the error variance in the direction
of the ith eigenvector is reduced by multiplying by a
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factor 1/(li 1 1) where l i is the ith eigenvalue of the
estimated forecast error covariance matrix H̃PfH̃T. Thus,
in normalized observation space, the eigenvalue spec-
trum of the analysis error covariance matrix is flatter
(‘‘whiter’’) than the corresponding forecast error co-
variance matrix eigenvalue spectrum. The above anal-
ysis shows that rescaling by differing factors in differing
directions is required to solve (1). Since the breeding
scheme rescales by a similar factor in all directions, the
filtering effect of the ETKF does not exist in the breed-
ing ensemble. Figure 5 illustrates these facts.

The lack of error variance in the trailing eigenvectors
of the breeding ensembles indicates that there would be
little point in having more than one or two ensemble
members in the breeding ensembles. For the ETKF, since
each direction contributes comparable amounts to the
ensemble forecast variance, larger size ensemble would
provide improved estimates of error variance. This hy-
pothesis is supported by the superiority of the 16-mem-
ber ETKF over the 8-member ETKF in the sensitivity
of the rescaling factor to the observation distribution
shown in Figs. 4a and 4d.

Equation (24) can also help us understand differ-
ences between the inflation factors used in the 8- and
16-member ETKF ensembles. For the 16-member
ETKF ensemble, the mean value of the inflation factor
on the initial variance, that is, [see Eqs. (8) and2P i

(13)], after a i converged, was found to be equal to
280 while for the 8-member ETKF ensemble it was
592 (note that the mean inflation factor for individual
perturbations, that is, P i , is 16.6 for the 16-member
ETKF and 24.2 for the 8-member ETKF). The fact
that the inflation factor on initial variance for the 16-
member ensemble is about half (280/592) of the in-
flation factor required for the 8-member ensemble in-
dicates that the primary reason for Eq. (8) producing
too small analysis error variance estimates is that the
rank of the ensemble-based covariances is much
smaller than the rank of the true forecast error co-
variance matrix. To understand this result in terms of
(24) note that at the perturbation initialization time,
the inflation factor applied 12 h earlier makes the sum
of the diagonal elements of G in Eq. (22) approxi-
mately the same for both the 8-member and 16-mem-
ber ETKF ensembles. Typically, K 2 1 of the ele-
ments of G are much larger than 1 and hence for the
8-member ensemble the trace of G(G 1 I) 21 is about
7 whereas for the 16-member ensemble the trace is
about 15. To make the sum of the diagonal elements
of G consistent with the control forecast error variance
in the next 12-h forecast, the 8-member ETKF initial
perturbations consequently need to be inflated by a
factor about 2 times as big as that for the 16-member
ETKF ensemble. In this way one sees that the inflation
factor will diminish as the number of ensemble mem-
bers increases.

6. Comparison of ensemble perturbation growth
characteristics

a. Analysis error covariance singular vectors

Ensemble forecasts should be able to reliably identify
forecasts where the chance of large forecast errors is
larger than usual. Because rapid amplification of anal-
ysis error can lead to large forecast errors, it is desirable
for an ensemble to contain perturbations representative
of likely analysis errors that can grow quickly. Ehren-
dorfer and Tribbia (1997) and Houtekamer (1995) point-
ed out that if one could obtain an accurate estimate of
the inverse analysis error covariance matrix, one could
find the initial vectors that evolve into the leading ei-
genvectors of the forecast error covariance matrix under
any norm of interest. These vectors are consistent with
the analysis error covariance statistics and are called the
analysis error covariance singular vectors (AECSVs;
Ehrendorfer and Tribbia 1997; Hamill et al. 2003, here-
after HSW). Barkmeijer et al. (1998, 1999) refers to
these vectors as Hessian singular vectors (HSVs) since
the inverse of the analysis error covariance is estimated
by the Hessian of the 3DVAR cost function. For an
ensemble that provides norm independent estimates of
Pf , for example, the ETKF, it is trivial to perform ei-
genvector decompositions of its estimated Pf to find the
linear combination of initial ensemble perturbations that
evolve into the leading eigenvectors of its estimated Pf

under any norm of interest. This is done by first finding
a linear combination of the forecast ensemble members
that is equal to the leading eigenvectors of the estimated
Pf under the norm of interest. Under the assumption of
linear dynamics, the same linear combinations of the
initial ensemble perturbation members will give the ini-
tial structure that evolve to the leading eigenvectors of
the estimated Pf . Thus, to the extent that one accepts
the ensemble estimated analysis error covariance, the
ensemble perturbations also provides AECSVs. Differ-
ent from Barkmeijer et al. (1998, 1999), the AECSVs
provided by the ensemble is flow dependent (see similar
calculation and discussion in HSW). Because, as indi-
cated by sections 4 and 5 (also indicated by the mean
and forecast error variance estimations in sections 7 and
8), the ETKF estimates the analysis error covariance
more accurately than the breeding schemes, the ETKF
provides more accurate AECSVs than the breeding
schemes.

b. Total energy norm singular vectors

Palmer et al. (1998) argued that total energy norm
singular vectors (TESVs) provide a reasonable approx-
imation to the forecast error covariances on the grounds
that analysis errors appeared to be spectrally white in
the total energy norm. They also argue that because the
amplification rate of the dominant singular vectors is 3
to 4 times larger than that of the breeding vectors, the
dominant singular vectors will explain more forecast
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FIG. 6. Fastest growth in ensemble perturbation subspace in total
energy norm from 1- to 2-day forecast lead time.

errors than the dominant breeding vectors provided the
projection of the analysis errors onto the dominant sin-
gular vectors is not less than 3 to 4 times the projection
of the analysis errors onto the breeding vectors. In this
section, we show that this problem proposed by Palmer
et al. (1998) that the bred vector grows too slow can
be ameliorated by the ETKF, which can be regarded as
a modified version of the breeding scheme.

As in all singular-vector-related techniques (Molteni
et al. 1996; Ehrendorfer and Tribbia 1997; Houtekamer
1995; Barkmeijer et al. 1998, 1999), to find the fastest
growing direction under a particular norm, we assume
that for a short term forecast the dynamics operator is
approximately linear; that is,

f aX 5 MX , (25)

where M is the linear dynamics propagator that maps
analysis perturbations Xa into forecast perturbations Xf .
We employ an approximate energy norm defined as

c1 1 p2 2 2u9 1 y9 1 T9 , (26)
2 2 Tr

where u9, y9, and T9 are wind and temperature pertur-
bations; cp is the specific heat at constant pressure; and
Tr is the reference temperature (Palmer et al. 1998). To
find the fastest growth in terms of this approximate en-
ergy norm, one needs to select the direction in the initial
ensemble perturbation subspace so that the total energy
amplification in this direction is maximized, that is,

T Tf fb (X ) SX b
max , (27)

a aT Tb (X ) SX b

where b is a vector combining initial ensemble pertur-
bations to find out the fastest growing direction and S
is a matrix used to define approximate perturbation en-
ergy norm. Solving for b in Eq. (27) is the same as
solving for b in function

T T T Tf f a aF 5 b (X ) SX b 2 l[b (X ) SX b 2 1] (28)

subject to the conditions that ]F/]b 5 0 and ]F/]l 5
0, which lead to an eigenvalue problem for l. The larg-
est value of l is the maximum growth in terms of total
energy norm. It is easy to show that the leading eigen-
value of b21/2DT(Xf )TSXfDb21/2 is the solution, where
b and D are the eigenvalue and eigenvector matrices of
(Xa)TSXa. Similar calculation is shown in Bishop and
Toth (1999).

Figure 6 shows the maximal energy growth for 1-
and 2-day forecast lead times. The ETKF ensemble has
larger maximal growth at all lead times. The reason for
this may be related to the fact that in a time-invariant
basic state, perturbations that maximize energy norm
growth require a complete set of normal modes of M
for their construction (Farrell 1988, 1989). In a time-
invariant basic state, the breeding ensemble perturbation
subspace would only contain the most rapidly growing
normal mode, whereas the ETKF ensemble perturbation

subspace would contain a wider range of normal modes.
Thus, in a time-invariant basic state, supernormal mode
growth rates could be found within the ETKF ensemble
perturbation subspace whereas finite time growth rates
would be bounded by the normal mode growth rate in
a breeding ensemble perturbation subspace. Figures 5
and 6 suggest that a similar lack of independent per-
turbation structures within the ensemble subspace of
bred perturbations may constrain maximal growth with-
in the bred-vector ensemble subspace.

Note that the masked bred-vector perturbations have
even smaller maximal growth than the simple bred-vec-
tor perturbations. This suggests that while masking in-
creases the number of directions in which variance is
maintained in a bred-vector ensemble (see Fig. 5), these
additional directions of variance are incapable of in-
creasing mean maximal energy growth. We speculate
that the masking is introducing unbalanced perturba-
tions into the ensemble that generally attenuate rapidly
with time. Note that the above discussion is based on
the belief in the assumption of linear dynamics. How
well the results from this linear dynamics approximation
corresponds to the actual nonlinear dynamics needs to
be further evaluated.

7. Root-mean-square error of the ensemble mean

In our experiment, the perturbed initial conditions are
not centered on the control analysis as the usual positive/
negative pair perturbations. So, for short-term forecasts
the ensemble mean is different from the control fore-
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FIG. 7. Globally averaged ensemble mean forecast error (200, 500,
and 850 hPa) in terms of the approximate energy norm as a function
of forecast lead time. The corresponding measurement of control
forecast error is also shown as a comparison.

cast.4 The ensemble means are validated against the
NCEP–NCAR reanalysis data at 1-, 2-, 3-, . . . , 10-day
forecast lead time at the observation sites. In Fig. 7 we
plot the 200-, 500-, and 850-hPa globally averaged en-
semble mean forecast error in terms of the approximate
energy norm defined in section 6 [Eq. (26)]. The cor-
responding measurements of control forecast errors are
also shown for comparison. It turns out that the ETKF
ensemble mean is more accurate than both the simple
breeding and the masked breeding for 1-day through
10-day forecasts. The ensemble mean of the masked
breeding is only slightly more skillful than that of the
simple breeding. Compared to the control, the ETKF
ensemble mean is more accurate than the control for 1-
day through 10-day forecasts while the breeding ensem-
ble means are only more accurate than the control after
4-day forecast. The more accurate ETKF ensemble
mean indicates that the ETKF initial perturbations sam-
ple the analysis errors better than both breeding
schemes. This can be explained by the fact that the
ETKF samples analysis errors in much more orthogonal
and uncorrelated directions than do the breeding
schemes (Fig. 5). Calculations on the correlations (not
shown here) of the forecast errors from ensemble mem-
bers show that the forecast errors of the ETKF ensemble
members are less correlated than those of both masked
and simple breeding ensemble members.

4 Comparison on paired and unpaired forecasts for a given com-
putational expense is carried out in a forthcoming paper.

8. Comparison of ensemble predictions of
innovation variance

a. Concept of ensemble spread precision

Studies by Toth et al. (2001) and Zhu et al. (2002)
suggest that evaluating the ability of an ensemble to
predict case-dependent forecast uncertainty is a critical
criterion to evaluate an ensemble forecast system. Just
like the true state can be regarded as a random variable
around the forecast, the true forecast error variance can
be regarded as a random variable around the ensemble
variance. An accurate prediction of forecast error var-
iance is one in which the true forecast error variance
distributes closely to the ensemble variance, that is, the
variance of the forecast error variance around the en-
semble variance is small. We refer to the ability of an
ensemble to get forecast error variance right on every
day at every grid point variable as ‘‘the precision’’ of
the ensemble variance.

As we shall discuss in future work, information about
the degree of ensemble variance precision can be used
to increase the accuracy of error probability density
functions derived from ensemble variances. Here, we
introduce new tests of ensemble variance precision.
Tests such as rank histograms (Hamill 2001), the relative
operating characteristics (ROC) curve (Mason 1982;
Richardson 2000), and the Brier Skill Score (Brier 1950;
Atger 1999) will not be considered here because they
require a PDF to be derived from the ensemble forecast
and, in our view, the derivation of such PDFs is non-
trivial. [Note that the simple method of constructing
PDFs by assuming that each ensemble member repre-
sents a random draw from the distribution of true fore-
casts is inappropriate for ETKF perturbations. As shown
in Eqs. (23) and (24), each ETKF analysis perturbation
divided by has an amplitude equal to one stan-ÏK 2 1
dard deviation of the error distribution that occurs in its
direction. Random perturbations would not be governed
by such a constraint. For similar reasons, breeding per-
turbations should not be considered to be random either.]
Future work will be devoted to the derivation of such
PDFs. The spread–skill correlation is not used because,
according to Whitaker and Loughe (1998), even for a
perfect ensemble the magnitude of the correlation be-
tween spread and skill need not be large.

b. Test 1: Resolved range of innovation variance

Consider a scatterplot of points for which the ordinate
and abscissa of each point is respectively given by the
squared 500-hPa U wind innovation and 500-hPa U
wind ensemble variance at 1-day forecast lead time at
one midlatitude observation location.5 Points collected
correspond to all midlatitude radiosonde stations and all

5 Examples of similar scatterplots are given in Majumdar et al.
(2002).
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FIG. 8. This figure is plotted by first drawing a scatterplot (not
shown) of squared 500-hPa U wind innovation vs 500-hPa U wind
ensemble variance at a particular forecast lead time for each mid-
latitude observation location for all forecasts during boreal summer
of 2000, dividing the points into four equally populated bins, arranged
in order of increasing ensemble variance, and then averaging the
squared innovation and ensemble variance in each bin. What is shown
is averaged squared innovation vs the averaged ensemble variance
from 1- to 3-day forecasts.

1-day 500-hPa U forecasts throughout the Northern
Hemisphere summer of 2000. To begin, we divide the
points into four equally populated bins, arranged in or-
der of increasing ensemble variance. Then we average
the squared innovation and ensemble variance in each
bin, respectively. Connecting the points corresponding
to these average values then yields a curve describing
the relationship between the sample innovation variance
and the ensemble variance. Figure 8 provides examples
of such curves.

To interpret the curves in Fig. 8, note that if forecast
errors were uncorrelated with observation errors then
innovation variance would be equal to the sum of fore-
cast error variance and observation error variance. Thus,
if observation error variance and model errors were also
uncorrelated with forecast error variance6 and if the en-
semble variance were equal to the forecast error vari-
ance, this curve would be a straight line with a slope
of 458. However, when the true forecast error variance
is a random variable distributed about the given ensem-
ble variance then the slope would be less than 458.

To see that inaccurate predictions of forecast error
variance tend to lead to relatively small slopes, note that
if the ensemble variance were uncorrelated with inno-

6 Note that the variance of the error of representation (often in-
cluded in observation error variance estimates) and model error are
both likely to be correlated with forecast error variance.

vation variance then the innovation variances would be
the same for all values of the ensemble variance. In such
a situation, relatively small ensemble variances would
underpredict innovation variance, whereas relatively
large ensemble variances would overpredict innovation
variance. Thus, we expect inaccurate predictions of fore-
cast error variance corresponding to relatively small
(large) ensemble spread to be negatively (positively)
biased. As the accuracy of ensemble-based predictions
of forecast error variance improves, this spread-depen-
dent bias will diminish, and the range of innovation
variances distinguishable from ensemble variance will
increase. Thus, by observing the range of the sample
innovation variance in such plots, the degree of ensem-
ble–spread precision is indicated.

Lines in Fig. 8 demonstrate the relationship between
the sample innovation variance and the ensemble var-
iance for 500-hPa U for 1–3-day forecasts (curves for
4–10 days are not shown), where we consider four
equally populated bins with about 2800 points in each
bin. The ETKF ensemble variance can resolve a wider
range of innovation variance than both breeding meth-
ods.7 This result is further confirmed when we increase
the number of bins to 64 (;175 points in each bin).
The dashed curves in Fig. 9 are the relationship between
the sample innovation variance and the ensemble var-
iance for 500-hPa U for 2-day forecasts when the num-
ber of bins increases to 64. Revealed by the dashed
curves, the range of the sample innovation variance
from the ETKF ensemble is about 40% and 100% great-
er than those from the masked breeding and the simple
breeding ensembles, respectively. When the ensemble
variance is larger than 15 (m s21)2, both the simple
breeding and masked breeding completely lose their
ability to distinguish differing forecast error variances.
Even for a 9-day forecast lead time, the 64-bin ETKF
dashed curve (see dashed curves in Fig. 10) allows in-
novation variance to be distinguished over a 17% larger
range than either of the corresponding breeding curves.

c. Test 2: Sensitivity to bin size

If the variance of the true forecast error variance about
the ensemble variance is large, then as the sample size
in each bin is reduced the relationship between the sam-
ple innovation variance and the ensemble variance be-
comes noisier. Thus, the rate at which this relationship
becomes noisy as the sample size in each bin is reduced
is another crude estimate of the accuracy of forecast
error variance prediction method. Figure 9 shows such
a sensitivity test for the 500-hPa U at 2-day forecast
lead time. The solid line corresponds to 4 bins of about
2800 realizations in each bin while the dashed line cor-
responds to 64 bins of about 175 realizations in each

7 Note that the variations of the slopes for each curve are expected
to be because the forecast error variance could correlate with the
model errors and/or the error of representations in observations.
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FIG. 9. Sensitivity test on relationship in Fig. 8 to bin size for 2-day forecast lead time for (a) 16-member ETKF
ensemble, (b) 16-member simple breeding ensemble, and (c) 16-member masked breeding ensemble. The R-square
values are shown on right bottom.

bin. The R-square values for the dashed curve relative
to the solid curve are 0.78, 0.65, and 0.49 for the ETKF,
masked breeding, and simple breeding ensembles, re-
spectively. Thus, as the sample size in each bin is de-
creased from 2800 to 175, the relationship between the
predicted and the realized innovation variance becomes
the noisiest for the simple breeding ensemble. As the
forecast lead time goes up to 9 or 10 days, the R-square
values for the three ensemble methods become similar
(see Fig. 10 for 9-day forecast). As mentioned above,
even in this case, the 64-bin ETKF curve for the 9-day
forecast still allows innovation variance to be distin-
guished over a larger range than either of the corre-
sponding breeding curves.

d. Test 3: Kurtosis

Consider a distribution of innovations corresponding
to a single value of ensemble variance. Assume that the
innovations are normally distributed with variance equal
to the sum of the forecast error variance and observation
error variance. An accurate ensemble variance would
be equal to the forecast error variance for all of the
innovation realizations and the distribution of innova-
tions corresponding to the ensemble variance value
would be normally distributed. However, if the ensem-
ble-based forecast error prediction was inaccurate, then
the innovation realizations would correspond to a dis-
tribution of forecast error variances. In particular, it
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FIG. 10. As in Fig. 9, except for 9-day forecast lead time.

would be likely that innovations corresponding to in-
novation variances substantially larger than the mean of
the innovation variances would occur. Consequently, the
likelihood of finding innovations with extremely large
magnitude within the distribution would increase. A
simple measure of the distribution that is sensitive to
such extreme values is the kurtosis. The kurtosis is the
expected value of the fourth power of realizations nor-
malized by their standard deviation (Goedicke 1953).
The kurtosis tends to be larger for distributions with
relatively heavy tails (i.e., many extreme values) than
it is for distributions with thin tails. For a normally
distributed random variable, the kurtosis is equal to 3.
For finite sample sizes, the true mean and kurtosis are
unknown. Nevertheless, one can approximate them with
the sample mean and the sample kurtosis. We first cal-

culate the innovation kurtosis in each of the four bins
(about 2800 innovations in each bin) and then average
the four kurtosis values. Figure 11 shows the 500-hPa
U innovation kurtosis averaged over four bins as a func-
tion of forecast lead time. The ETKF kurtosis is smaller
than that of both the breeding methods throughout 1-
to 10-day forecasts.

We conclude this section by noting that the results
from all three of our ensemble precision measures in-
dicate that the ETKF ensemble variance is more accurate
than the ensemble variances produced by the breeding
ensembles.

9. Computational expense
The main computations required for the ETKF

scheme are the (K 2 1) 3 (K 2 1) inner products in
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FIG. 11. Innovation kurtosis for 500-hPa U averaged on four bins
defined in Fig. 8 for 1- to 10-day forecast lead time.

observation space required to form the elements of
(Z f )THTR21HZf [Eq. (10)] together with its eigenvector
decomposition. Because K is the number of ensemble
members, the number of operations required for these
computations is much less than that required for the
generation of the singular vector perturbations (Molteni
et al. 1996) and the perturbed observation perturbations
(Houtekamer et al. 1996). In our experiment, the com-
putational expense for generating the ETKF initial per-
turbations is only 6% and 4% more expensive than that
of generating the simple breeding and masked breeding
initial perturbations, respectively.

10. Summary

The ETKF ensemble generation technique is similar
in spirit to the breeding technique in that it views anal-
ysis perturbations as filtered forecast perturbations. In-
stead of multiplying each forecast perturbation a global
or regional rescaling factor, the ETKF ensemble gen-
eration scheme transforms forecast perturbations into
analysis perturbations via linear combinations of fore-
cast perturbations that solve the error variance update
equation for the optimal data assimilation within the
ensemble perturbation subspace. Consequently, the
ETKF analysis perturbation is able to reflect the density
and accuracy of observations. Although the breeding
modulated by a mask seems able to resolve the spatial
inhomogenieties of the observation distribution, the
mask is only two-dimensional and time invariant. Be-
sides, it can produce initial perturbation imbalance that
excites unrealistic wave growth. Provided 12-h forecast
perturbations are balanced and of linear amplitude then

the ETKF analysis perturbations are balanced. In the
ETKF scheme, directions corresponding to large fore-
cast error variance in observation space are attenuated
more than directions corresponding to small forecast
error variance. Thus, while the error variance of a 16-
member breeding ensemble is concentrated in a single
direction, the ETKF 16-member ensemble error vari-
ance was spread with comparable amounts among 15
independent, orthogonal, and uncorrelated directions.
The application of a mask on the breeding only slightly
ameliorates the rank deficiency problem of the simple
breeding method.

The fastest growth under the energy norm within the
ensemble perturbation subspace of the ETKF scheme is
larger than the breeding schemes. The application of the
mask actually degrades the fastest growth rate of the
simple breeding scheme. The ensemble mean of the
ETKF ensemble is more accurate than both breeding
methods. It is argued that imperfections in the corre-
spondence between ensemble variance and forecast er-
ror variance would be indicated by (a) a relatively small
range over which sample pseudoinnovation variance
could be predicted from ensemble variance, (b) a high
sensitivity of the relationship between ensemble vari-
ance and sample pseudoinnovation variance to the num-
ber of realizations in each bin, and (c) distributions with-
in each bin of pseudoinnovations whose mean fourth
powers (kurtosis) are relatively high (see section 8b for
the definition of a bin). Investigation along these lines
indicates that the ETKF estimates of forecast error var-
iance are considerably more accurate than those of the
breeding techniques. In other words, the ensemble
spread of the ETKF ensemble is better able to distin-
guish the case-to-case forecast uncertainty than the
breeding ensembles.

Besides the superior ensemble forecast skills of the
ETKF scheme over the breeding schemes, the compu-
tational expense of the ETKF is also quite small (,6%
more than the breeding ensemble). Thus, the ETKF en-
semble generation scheme would be straightforward to
employ operationally. When applied to operational fore-
cast centers, more ensemble members and more realistic
observation networks need to be included.
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APPENDIX

Filtering Effect of Optimal Data Assimilation

For an optimal data assimilation scheme, analysis er-
ror covariance matrix Pa is related to the forecast error
covariance matrix Pf and observation error covariance
matrix R by

21a f f T f T fP 5 P 2 P H (HP H 1 R) HP , (A1)

where H is the linear observation operator that maps model
variables to observed variables. Define H̃ 5 R21/2H. Then
premultiply and postmultiply (A1) by H̃ and H̃T, re-
spectively. Then (A1) becomes

a 21T f T f T f T f T˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜ ˜HP H 5 HP H 2 HP H (HP H 1 I) HP H ,
(A2)

where I is the identity matrix; H̃PaH̃T/H̃PfH̃T is the anal-
ysis/forecast error covariance matrix in the observation
subspace and normalized by the observation error co-
variance. To see the filtering effect, we express (A2) in
terms of the eigenvectors of H̃PfH̃T. Suppose each col-
umn of E is an eigenvector of H̃PfH̃T, and G is a diagonal
matrix containing corresponding eigenvalues of H̃PfH̃T.
Then

f T T˜ ˜HP H 5 EGE , and (A3)
21 21f T T˜ ˜(HP H 1 I) 5 E(G 1 I) E . (A4)

Using (A3) and (A4), (A2) becomes
2 21 21a T T T˜ ˜HP H 5 E[G 2 G (G 1 I) ]E 5 EG(G 1 I) E .

(A5)

Comparing Eqs. (A3) and (A5), error variance on the
ith eigenvector is reduced by multiplying a factor 1/(li

1 1), where l i is the ith eigenvalue. Thus, error variance
in the direction of the leading eigenvector is attenuated
the most. Consequently, the eigenvalue spectrum of
H̃PaH̃T is whiter than that of H̃PfH̃T.
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