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ABSTRACT

A hybrid ensemble transform Kalman filter (ETKF)–optimum interpolation (OI) analysis scheme is
described and compared with an ensemble square root filter (EnSRF) analysis scheme. A two-layer primi-
tive equation model was used under perfect-model assumptions. A simplified observation network was
used, and the OI method utilized a static background error covariance constructed from a large inventory
of historical forecast errors. The hybrid scheme updated the ensemble mean using a hybridized ensemble
and static background-error covariance. The ensemble perturbations in the hybrid scheme were updated by
the ETKF scheme. The EnSRF ran parallel data assimilation cycles for each member and serially assimi-
lated the observations. The EnSRF background-error covariance was estimated fully from the ensemble.

For 50-member ensembles, the analyses from the hybrid scheme were as accurate or nearly as accurate
as those from the EnSRF, depending on the norm. For 20-member ensembles, the analyses from the hybrid
scheme were more accurate than analyses from the EnSRF under certain norms. Both hybrid and EnSRF
analyses were more accurate than the analyses from the OI. Further reducing the ensemble size to five
members, the EnSRF exhibited filter divergence, whereas the analyses from the hybrid scheme were still
better than those updated by the OI. Additionally, the hybrid scheme was less prone to spurious gravity
wave activity than the EnSRF, especially when the ensemble size was small. Maximal growth in the ETKF
ensemble perturbation space exceeded that in the EnSRF ensemble perturbation space. The relationship of
the ETKF ensemble variance to the analysis error variance, a measure of a spread–skill relationship, was
similar to that of the EnSRF ensemble. The hybrid scheme can be implemented in a reasonably straight-
forward manner in the operational variational frameworks, and the computational cost of the hybrid is
expected to be much less than the EnSRF in the operational settings.

1. Introduction

Variational techniques are now almost universally
used for operational atmospheric data assimilation, ei-
ther in its three-dimensional form (3DVAR; e.g., Par-
rish and Derber 1992; Courtier et al. 1998; Gauthier et
al. 1998; Cohn et al. 1998) or in its four-dimensional

form (4DVAR, e.g., Courtier et al. 1994; Rabier et al.
1998, 2000). Both 3DVAR and 4DVAR assimilations
generally utilize a nearly homogeneous, isotropic, and
stationary background error covariance model, which
only provides a crude estimate of the actual flow-
dependent forecast-error structure. Currently, 3DVAR
is still utilized in many operational centers because of
its computational efficiency and algorithmic simplicity.

Recently, a variety of techniques have been explored
to relax the restrictions on the background-error co-
variance model in data assimilations. For 3DVAR,
techniques are being developed that make it possible to
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include some spatial inhomogeneity, nonstationarity,
and anisotropy (e.g., Riishøjgaard 1998; Wu et al. 2002;
Purser et al. 2003; Liu et al. 2005). A different approach
is to use ensemble-based data assimilation techniques,
where the background-error covariances are estimated
from an ensemble of short-term forecasts (e.g.,
Evensen 1994; Burgers et al. 1998; Houtekamer and
Mitchell 1998, 2001, 2005, hereafter HM05; Anderson
2001; Whitaker and Hamill 2002; Tippett et al. 2003;
Snyder and Zhang 2003; Ott et al. 2004; Hamill and
Whitaker 2005; Szunyogh et al. 2005; Tong and Xue
2005; Hanea et al. 2007). For reviews on ensemble-
based techniques, see Evensen (2003), Lorenc (2003),
and Hamill (2006).

The presumed benefit of utilizing these ensemble-
based techniques is their ability to provide a flow-
dependent estimate of the background-error covari-
ances so that the relative contribution of the back-
ground and the observations are more appropriately
weighted. Another potential benefit is that the pro-
cesses of ensemble forecasting and data assimilation are
unified. In many controlled tests with simple models
and simulated observations, ensemble-based methods
have demonstrated dramatically improved analysis
skill. However, such dramatic improvements have not
yet been seen in the tests of ensemble-based methods in
realistic operational environments. Recent global, real-
data experiments show that the ensemble Kalman filter
(EnKF; Houtekamer et al. 2005; HM05) and the en-
semble square root filter (EnSRF; Whitaker et al. 2006,
manuscript submitted to Mon. Wea. Rev.), provide
comparable or slightly better results to operational
3DVAR algorithms.

Many of the current ensemble-based data assimila-
tion techniques serially process the observations, so the
computational expense of the algorithm scales linearly
with the number of observations. Attractively, the op-
erational 3DVAR at the National Centers for Environ-
mental Prediction (NCEP) enables many more obser-
vations to be added without dramatically increasing
computational cost (J. Derber 2005, personal commu-
nication). The computational expense of such en-
semble-based algorithms may make them unattractive
for use in operational numerical weather prediction
centers, where the numbers of available observations
are increasing rapidly each year.

Is there a method that can take advantage of the
computational efficiency of the 3DVAR while also ben-
efiting from the ensemble-estimated error covariance?
Recently, Hamill and Snyder (2000, henceforth HS00)
proposed a hybrid EnKF–3DVAR method. In this
scheme, the background error covariance was obtained

by linearly combining a flow-dependent background er-
ror covariance from the ensemble with the standard
error covariance estimate from 3DVAR. Each en-
semble member was then updated variationally with
perturbed observations. Subsequently, Lorenc (2003)
and Buehner (2005) discussed how an ensemble-based
covariance model could be adapted conveniently to the
variational framework by extending the control vari-
ables. A proof of the equivalence of the hybrid method
realized by the augmented control variables and by di-
rectly weighting the covariances was recently provided
in Wang et al. (2007).

More recently, Etherton and Bishop (2004, hereafter
EB04) tested a hybrid scheme in a two-dimensional
turbulence model. In EB04, the ensemble covariance
was estimated from the ensemble transform Kalman
filter (ETKF) ensemble, and the static background er-
ror covariance was formulated in a similar way to the
optimal interpolation (OI) scheme (Daley 1985; Lorenc
1981; Daley 1991). Unlike the HS00 scheme where K
parallel data assimilation cycles for the K members
were required, in the EB04 scheme, a single update of
the mean was performed, while the ETKF transformed
the background perturbations into analysis perturba-
tions in a computationally efficient manner. EB04
found that the performance of the hybrid scheme using
the ETKF ensemble was comparable to that obtained
using considerably more expensive ensemble genera-
tion schemes.1

The purpose of this study is to further explore the
potential skill of the hybrid scheme proposed in EB04
by comparing it with the EnSRF, one of the more well-
tested ensemble-based assimilation schemes (Whitaker
and Hamill 2002; Whitaker et al. 2006, manuscript sub-
mitted to Mon. Wea. Rev.; Snyder and Zhang 2003;
Tong and Xue 2005; Zhang et al. 2004). Note that in this
paper, the proposed hybrid scheme will update the
mean state by using the classic statistical, or OI formula
(Schlatter 1975), which is the same method of solution
as the Kalman filter state update equation (Daley
1991). We thus call it the hybrid ETKF–OI scheme.
However, under our experiment design, it will provide
the same solution as if we had updated the mean state
in a 3DVAR framework using the same background-
error covariance model (Wang et al. 2007; Daley 1991).

1 The ETKF was proposed by Bishop et al. (2001). It has been
demonstrated to be a useful tool for targeted observations (Ma-
jumdar et al. 2001, 2002a,b). Wang and Bishop (2003) and Wang
et al. (2004) also showed that the ETKF provided an inexpensive
yet demonstrably superior scheme to the breeding method (Toth
and Kalnay 1993, 1997) for generating perturbed initial conditions
for ensemble forecasts.
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The motivating factors for exploring the hybrid
ETKF–OI scheme in more depth include the following:
(i) the hybrid can be incorporated into the operational
variational schemes through minor extensions of the
current variational framework (Lorenc 2003; Buehner
2005; Wang et al. 2007); (ii) it can perform no worse
than 3DVAR, for its blend of covariances can always
be adjusted to exclude the contribution of the en-
semble; and (iii) the hybrid is computationally less ex-
pensive than the EnKF and the EnSRF. Hence, if the
hybrid scheme controls error as well as the EnSRF in
the simple-model experiments considered here, the mo-
tivation for testing the hybrid at operational centers
would increase.

As an initial attempt to investigate the potential skill
of the hybrid ETKF–OI relative to the EnSRF, we con-
duct experiments using a two-layer primitive equation
model under the perfect-model assumption. The
simple-model tests considered here allow us to directly
compare results from the hybrid, EnSRF, and OI meth-
ods. In imperfect-model simulations or real-data ex-
periments, differences in quality would be affected by
many other factors, such as the parameterization of
model errors or the quality control of the observations.
Future work by the coauthors will extend this research
to compare the methods in simulations including model
error.

The rest of the article is organized as follows. In sec-
tion 2, we briefly review the hybrid ETKF–OI and the
EnSRF analysis schemes. Section 3 describes the ex-

perimental design. Results of comparing the two
schemes are reported in section 4. Section 5 provides a
discussion and conclusions.

2. The hybrid ETKF–OI and the EnSRF analysis
schemes

a. The hybrid ETKF–OI scheme

Figure 1 illustrates how the hybrid ETKF–OI data
assimilation cycle works. Start with an ensemble of K
background forecasts at time t0. The following four
steps are then repeated for each data assimilation cycle.
1) Update the ensemble-mean or a high-resolution con-
trol forecast by the hybridized background error covari-
ance. 2) Update the forecast perturbations using the
computationally inexpensive ETKF. 3) Add the up-
dated ensemble perturbations to the updated ensemble
mean to generate K initial ensemble members. 4) Make
K forecasts starting from the K initial ensemble mem-
bers forward to the next analysis time.

We first consider the update of the mean in the hy-
brid method. Here, the background-error covariance
Pb is approximated by a linear combination of the
sample covariance matrix of the ETKF forecast en-
semble P e and the static covariance matrix B; that is,

Pb � �1 � ��Pe � �B, �1�

where � is the weighting coefficient, 0 � � � 1, and P e

is given by

FIG. 1. Illustration of the hybrid ETKF–OI analysis and ensemble generation cycle for a
hypothetical three-member ensemble. The ensemble mean is updated with the background-
error covariance estimated by the linear combination of the ETKF ensemble covariance and
the static covariance. The ensemble perturbations are updated by the ETKF transformation
matrix, with innovation-based inflation applied.
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Pe �
Xb�Xb�T

K � 1
, �2�

where the columns of Xb contain K ensemble pertur-
bations from the mean, x �b

i , i � 1, . . . K.
The ensemble-mean forecast xb is then updated by

the new observations y to obtain the ensemble-mean
analysis xa using

xa � xb � PbHT�HPbHT � R��1�y � Hxb�, �3�

where H is the observation operator mapping from the
model state variables to the observed variables, here
presumed linear, R is the observation-error covariance
matrix, and Pb is given by Eq. (1). Note as in EnKF
framework (Evensen 1994; Houtekamer and Mitchell
1998), there is no need to compute and store the full
matrix Pb. Instead we first form BHT and HBHT (see
section 3b for details), and calculate P eHT and HP eHT

from the ensemble. Then we use the linear coefficient �
as in Eq. (1) to form PbHT and HPbHT; that is,

HPbHT � �1 � ��HPeHT � �HBHT, �4�

PbHT � �1 � ��PeHT � �BHT. �5�

When � � 1, the background error covariance is fully
estimated from the static background error covariance.

A now-common adjustment to error covariances es-
timated directly from the ensemble is to apply a “local-
ization.” Covariance localization implements an el-
ementwise multiplication of the background error co-
variance matrix with a correlation function with local
support (Houtekamer and Mitchell 2001; Hamill et al.
2001). This typically stabilizes the filter by damping out
spurious covariances between distant locations, an in-
evitable consequence of estimating error covariances
with a limited-size ensemble. As will be shown in the
results, covariance localization is not strictly required in
the hybrid scheme when updating the mean, for the
addition of a higher-dimensional static background-
error covariance itself stabilizes the filter. However, the
mitigating effects of covariance localization will be
tested when updating the ensemble-mean state. To ap-
ply covariance localization, we replace HP eHT in Eq.
(4) and P eHT in Eq. (5) by �s � HPeHT and �s � PeHT,
respectively, where the operation �s � denotes a Schur
product of a correlation matrix �s with the covariance
matrix generate by the ensemble. For horizontal local-
ization, one such correlation matrix can be constructed
using Gaspari and Cohn’s (1999) approximately Gauss-
ian-shaped function with local support, which will be
used here. Henceforth we shall refer to a “scale” of the
localization. A scale of 3000 km indicates that the Gas-

pari and Cohn correlation function tapers to zero at this
distance.

As mentioned in the previous section and section 5,
previous work (Lorenc 2003; Buehner 2005; Wang et al.
2006) has shown that hybridizing the ensemble covari-
ance in the existing operational 3DVAR framework
should be straightforward. In this study, we updated the
mean using Eqs. (3)–(5). The solution given by Eqs.
(3)–(5) is the same as the solution given by the varia-
tional framework proposed by Lorenc (2003) and Bue-
hner (2005), under the assumptions of the normality of
the errors.

We now consider the method for updating perturba-
tions around the mean state. In the proposed hybrid
scheme, the ensemble perturbations are updated by the
ETKF. The ETKF transforms the matrix of forecast
perturbations Xb into a matrix of analysis perturbations
Xa, whose columns contain K analysis perturbations,
x �a

k , k � 1, . . . , K. The transformation happens through
the postmultiplication by the matrix T, that is,

Xa � XbT. �6�

The transformation matrix is chosen to ensure that the
analysis-error covariance formed from the outer prod-
uct of the transformed perturbations will be precisely
equal to the true analysis-error covariance, assuming
that Eq. (2) denotes the true forecast-error covariance,
all errors are normally distributed, and H is linear. As
shown in Bishop et al. (2001), Wang and Bishop (2003),
and Wang et al. (2004), a precise spherical simplex so-
lution of T is

T � C�� � I��1�2CT, �7�

where C contains the eigenvectors and � the eigenval-
ues of the K � K matrix (Xb)THTR�1HXb and I is the
identity matrix. For the ensemble size K of 100 or less,
the computation of Eq. (7) is relatively inexpensive.

Recent research has shown that when K is signifi-
cantly smaller than the rank r of the true forecast-error
covariance, Eq. (7) systematically underestimates the
analysis-error variance. In Wang and Bishop (2003), the
ensemble of analyzed deviations Xa were inflated by
large factors to compensate for the ETKF’s underesti-
mate of the analysis-error variance (Wang and Bishop
2003). An alternative formulation of the ETKF (appen-
dix A) significantly ameliorated this bias by accounting
for (i) the fact that the sample covariance of K forecast
trials systematically overestimates the true error vari-
ance within the ensemble subspace when K K r, and (ii)
the expected difference in angle subtended between en-
semble-based eigenvectors and true eigenvectors.
Based on these arguments, the ETKF transformation
matrix T as applied here is
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T � C��� � I��1�2CT, �8�

where the scalar factor 	 is the fraction of the forecast
error variance projected onto the ensemble subspace. It
is estimated by

� �
�R�1�2y � H̃xb�TEET�R�1�2y � H̃xb� � �K � 1�

�R�1�2y � H̃xb�T�R�1�2y � H̃xb� � p
,

�9�

where p is the number of observations, H̃ is the nor-
malized observation operator H̃ � R�1/2H, and the col-
umns of E contain the eigenvectors of the ensemble
covariance in normalized observation space. As shown
in Eq. (12) of Bishop et al. (2001),

E � H̃XbC��1�2�
K � 1. �10�

The overbar in Eq. (9) represents the average over
some independent samples. In this experiment it is the
average over two weeks’ computations prior to each
assimilation time. For derivations of Eqs. (8) and (9),
please refer to appendices A and B, respectively.

Note that the computational efficiency of the ETKF
is realized by solving the transformation matrix in en-
semble perturbation subspace (Bishop et al. 2001).
Thus, to maintain the efficiency of the ETKF, the en-
semble update is performed using only the ensemble-
based covariance, not a hybrid covariance. Also, no
covariance localization via either a smooth correlation
function (e.g., HM05; Whitaker and Hamill 2002) or via
domain decomposition (Ott et al. 2004; Szunyogh et al.
2005) was applied when the ETKF updated the en-
semble perturbations. The transformation was done for
the global perturbations to take advantage of the com-
putational efficiency of the ETKF.

Because the new ETKF formulation, Eq. (8), can
only partly ameliorate the old formulation’s underesti-
mate of the analysis-error variance, we still apply an
inflation to increase the ensemble covariance. In this
study, the maximum-likelihood inflation method
(Wang and Bishop 2003) is applied to the analysis per-
turbations. The idea is to multiply the initial perturba-
tions obtained at time ti by an estimated inflation factor
�i; that is,

X i
a � X i

fTi�i . �11�

The purpose of this is to ensure that at time ti�1 the
background ensemble forecast variance is consistent
with the ensemble-mean background-error variance
over global observation sites. Specifically, define d̃i as
the innovation vector at ti, normalized by the square
root of the observation error covariance matrix, that is,

d̃i � R�1/2(yi � Hxb
i ), where yi is the observation vector

at ti and Hxb
i is the ensemble mean background forecast

valid at the time ti mapped into observation space by
the observation operator H. Given that the inflation
factor at ti�1 was �i�1, the inflation factor for the trans-
formed perturbation at ti is obtained by first checking if
d̃T

i d̃i is equal to Tr(H̃P e
i H̃

T � I), where Tr denotes the
trace. If not, we need to introduce a parameter ci so that

d̃i
Td̃i � Tr�H̃ciPi

eH̃T � I�. �12�

Then the inflation factor �i is defined as

�i � �i�1
ci. �13�

This rescaling of the initial perturbations by Eq. (13)
attempts to correct the spread of the set of forecast
ensemble perturbations at time ti�1 by using the rescal-
ing factor that would have produced a proper forecast
ensemble spread at ti if it had been applied to the trans-
formed perturbations at ti�1. From Eq. (12),

ci �
d̃i

Td̃i � p

Tr�H̃Pi
eH̃T�

, �14�

where p is the number of observations. From Eq. (13),
�i is a product of these c parameters from the first
forecast at time t1 to that at time ti, that is,

�i � 
c1c2 · · · ci . �15�

A lower bound of 1.0 is set for �i. Implicitly in Eq. (12),
we assume d̃T

i d̃i � Tr�d̃i d̃
T
i 
, which requires the number

of independent elements in the innovation vector d̃i to
be large. The real-time global observational network
meets this assumption well (Dee 1995). Because the
number of observations in our experiment is rather lim-
ited, we replace d̃T

i d̃i in Eqs. (12) and (14) by using the
average of squared innovation vectors two weeks prior
to time ti, denoted as d̃Td̃prior ti

(see discussion in appen-
dix B also). Thus Eq. (14) becomes

ci �
d̃Td̃prior ti

� p

Tr�H̃Pi
eH̃T�

. �16�

In the following experiment, the averaged value and
standard deviation of �i decreased with increasing en-
semble size.

b. The EnSRF analysis scheme

The EnSRF was fully described in Whitaker and
Hamill (2002). It is one of the simpler implementations
of a class of ensemble square root filters, which includes
the ETKF (Tippett et al. 2003). Whereas the primary
advantage of the hybrid scheme is its potential low
computational expense, the comparative advantage of
the EnSRF is its relative algorithmic simplicity and its
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full exploitation of ensemble-based background error
covariances. In the EnSRF, covariance localization is
required to avoid filter divergence (Houtekamer and
Mitchell 2001; Hamill et al. 2001).

The EnSRF serially assimilates observations. The en-
semble of perturbations updated by the previous obser-
vations is used to model the background-error covari-
ance for assimilating the next observation (for details
see Whitaker and Hamill 2002). Similarly, the updated
mean from the assimilation of the previous observation
is used as the prior state for the assimilation of the next
observation. The EnSRF update equations are as fol-
lows:

xa � xb � K�y � Hxb�, �17�

x �a
i � �I � K̃H�x �b

i . �18�

Here K is the Kalman gain modified by the covariance
localization,

K � ��s � PeHT���s � HPeHT � R��1, �19�

where operation �s � denotes a Schur product of a cor-
relation matrix �s with the covariance matrix generated
by the ensemble. Horizontal localization by using Gas-
pari and Cohn’s (1999) approximately Gaussian-shaped
function is used here; K̃ in Eq. (18) is called the “re-
duced” Kalman gain matrix (Whitaker and Hamill
2002). When sequentially processing independent ob-
servations, K, K̃, and P eHT are all vectors with the same
number of elements as the model-state vector, and
HP eHT and R are scalars. The reduced gain matrix be-
comes

K̃ � �1 �� R

HPeHT � R
��1

K. �20�

Inflation factors were computed and applied to the
EnSRF using the same method as that used for the
ETKF ensemble in Eqs. (15)–(16).

3. Experiment design

a. Model, observations, and ensemble configuration

In this study, we ran a dry, global, two-layer primitive
equation model (Zou et al. 1993). It was previously
used in Hamill et al. (2001) and Hamill and Whitaker
(2005) for ensemble data assimilation experiments in
both a perfect-model and imperfect-model contexts.
The model is spectral, and the model-state vector in-
cludes coefficients of vorticity and divergence at two
levels and coefficients of two-layer thicknesses ��1 and
��2, where � is the Exner function. There is a simple,
zonal wavenumber-2 terrain. The model is forced by

Newtonian relaxation to a prescribed interface Exner
function. A fourth-order Runge–Kutta scheme is used
for numerical integration, and �8 hyperdiffusion is
used. The parameters chosen are the same as in Hamill
and Whitaker (2005). The model was run at T31 reso-
lution. The error-doubling time of the model at T31 is
3.78 days. The perfect-model assumption was made in
the following experiment. The model was shown by
previous studies to realistically represent the nonlinear
baroclinic wave cycles (Zou et al. 1993). For more de-
tailed characteristics of the model including the kinetic
energy power spectra and error growth characteristics,
see Hamill and Whitaker (2005).

Observations of interface � and surface � were taken
at a set of nearly equally spaced locations on a spherical
geodesic grid (Fig. 2). The 362 observations of each
consisted of the T31 true state plus errors drawn from a
distribution with zero mean and standard deviation of
8.75 J kg�1 K�1 for interface � and 0.875 J kg�1 K�1 for
surface �, respectively. The numbers chosen were
about one quarter of the globally averaged climatologi-
cal spread of the nature runs. Observation errors were
constructed to be independent spatially and temporally,
and observations were assimilated every 24 h.

Ensembles of size 50 to 5 were examined. The en-
semble was initialized with random draws from the
model climatology. The data assimilation was con-
ducted for 250-day period, and the statistics were accu-
mulated over the last 150 days.

FIG. 2. Observation sites in the simulated observational net-
work (dots). There are 362 sites nearly uniformly distributed on a
spherical geodesic grid.
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b. Formulation of the static background error
covariance

In this experiment, we used a technique for develop-
ing a static background error covariance model similar
to those described by Evensen (2003), Zhang and
Anderson (2003), and Hamill and Whitaker (2005). The
static background-error covariance was formed from a
large inventory of historical forecast errors over many
separate times.

To optimize the static background error covariance
model, we performed the following steps: 1) a first es-
timate of the static background-error covariance matrix
was constructed from the estimated covariance based
on 250 samples of historical 24-h forecast errors. Be-
cause 250 samples were much smaller than the dimen-
sion of the model,2 a Gaspari and Cohn (1999) hori-
zontal localization was used to reduce the sampling er-
ror in this first estimate of the static background-error
covariance. A few localization scales were tried, and we
chose to apply the 15 000-km scale as it produced the
smallest analysis errors.3 2) Then 7000 data assimilation
cycles were run with the background-error covariance
approximated by the first estimate of the static back-
ground error covariance given in step 1. Equations (3)–
(5) were used with � � 1, and at each assimilation time
the first-guess forecast was the single 24-h control fore-
cast valid at this time. From these 7000 cycles, we were
able to collect 7000 samples of 24-h forecast errors.
Note the number of forecast error samples, 7000, was
greater than the number of variables of the model used
in this study. 3) The static background error covariance
matrix was constructed by calculating the covariance of
this large inventory of the forecast error samples. No
covariance localization was applied. 4) With the static
background-error covariance model constructed in step
3, we ran another 7000 cycles of data assimilation. Steps
3 and 4 were then iterated until the error did not de-
crease significantly. Figure 3 shows the root-mean-
square (rms) analysis errors measured with three dif-
ferent norms corresponding to the first estimate of the

static covariance, and the first, second, and third itera-
tively constructed static covariances. Figure 4 shows the
absolute value of the hourly surface Exner function ten-
dency, an analogy to surface pressure tendency, aver-
aged globally and over the 24-h forecast periods. After
each iteration, the rms analysis errors were reduced
(Fig. 3) and the analyses became more balanced (Fig.
4). After repeating steps 3 and 4 three times, the de-
crease in rms analysis error and imbalance was statisti-
cally insignificant. We thus used the static background-
error covariance model at the last iteration, denoted as
B3, for the rest of the experiments.

Compared with the classic static background-error
covariance in OI and 3DVAR, the static background-
error covariance matrix constructed from a large inven-
tory of the forecast errors made far fewer assumptions
on the form of the covariances. For example, it did not
presuppose the error covariances were homogeneous
or isotropic, as typically assumed in OI and 3DVAR.
Because the covariances were estimated directly from
model states, whatever mass-wind balance properties
possessed by these model states were preserved in the
covariances. It is thus expected that the static back-
ground-error covariance model constructed in this
simulation experiment is actually better than back-
ground-error covariances formulated for operational
OI and 3DVAR, where the true state can never be
known.

In this paper, following EB04, an online-estimated
rescaling factor was used to rescale the static covariance
matrix so that the total variance of the rescaled covari-
ance matrix more appropriately estimated the total
forecast-error variance, which varied with time. To be
specific, during each assimilation cycle we rescaled the
static covariance models so that in the normalized ob-
servation space, the total variance of the rescaled co-
variance model was consistent with the total forecast
error variance estimated by the innovations. Math-
ematically, at data assimilation time ti, we sought a res-
caling factor fi that satisfied

d̃Td̃prior ti
� Tr�H̃fiB3H̃

T � I�, �21�

where d̃Td̃prior ti
was defined the same as in Eq. (16).

The rescaled gain components at ti were HBiH
T �

HfiB3H
T and BiH

T � fiB3H
T. For more detailed discus-

sions, please refer to EB04. As shown in Eq. (21), the
value of the rescaling factor fi varies depending on the
magnitude of the innovation vectors. In the following
experiment running the OI data assimilation cycles, fi

varied from 0.5 to 1.4. Note that the rescaling strate-
gies adopted made traces of the ensemble covariance
and the rescaled static error covariance approximately

2 The number of complex spectral coefficients predicted by the
model is 3168.

3 The first estimate of the static covariance model was also con-
structed iteratively. 1) The first 250 samples of the forecast errors
were collected from the ensemble mean forecast errors of the
EnSRF. 2) Different covariance localizations were tried on the
sample covariance of the 250 samples and data assimilation cycles
were conducted with these different trials. 3) The one that pro-
duced the smallest rms errors were picked and its 250 forecast
errors samples were collected. Steps 2) and 3) were repeated until
the rms analysis errors reached the lowest value and saturated.
The final static covariance was the first estimate B0 in Fig. 3 and
Fig. 4.
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equal. Thus, the coefficient � in Eqs. (1), (4), and (5)
gave a clearer indication of the relative weights as-
signed on the error correlations given by the ensemble
and the static covariance model.

4. Results

a. Analysis errors

In this section, we evaluate the characteristics of the
ensemble-mean analysis errors for the hybrid and the
EnSRF analysis schemes. Figure 5 shows the rms analy-
sis error in the norms of kinetic energy, upper-layer
thickness ��2, and the surface pressure � for the 50-
member ensemble. Definitions of these norms are pro-
vided in Hamill and Whitaker (2005). The gray bars
correspond to the rms analysis errors of the EnSRF
with respect to different covariance localization length
scales of 3000, 5000, 15 000, 25 000, and 35 000 km. The
EnSRF exhibited filter divergence if no localization was
applied. The black bars correspond to the results of the
hybrid scheme as a function of the weighting coefficient
�. Different covariance localization scales were tried on
the ensemble covariance at each � for the hybrid

FIG. 3. Root-mean-square errors in ki-
netic-energy norm, upper-layer thickness
��2 norm, and surface � norm for the analy-
ses updated by the static background error
covariances constructed iteratively in section
3b; B0, B1, B2, and B3 denote the rms analy-
sis errors corresponding to the first estimate
of the static background error covariance,
the first, the second, and the third iteratively
constructed static background error covari-
ances with a large sample of 24 h forecast
errors, respectively.

FIG. 4. Mean absolute surface � tendency (J kg�1 K�1 h�1)
averaged globally, over the subsequent twenty-three 1-h periods
for forecasts initialized with the analyses updated by the static
background error covariance constructed in section 3b.
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scheme when updating the mean. Each black bar cor-
responds to the localization scale that produced the
smallest rms errors at that �. Specifically, for � � 0.0,
0.2, 0.4, 0.6, and 0.8, the optimal covariance localization
scales for the black bars were 25 000, 25 000, 35 000,
45 000, and 45 000 km. The hatched bars at � � 0.2, 0.4,
0.6, 0.8 are for the hybrid with no covariance localiza-
tion applied on the ensemble when updating the mean.
Filter divergence occurred for the hatched bar at � �
0.0, and hence no hatched bar is shown at � � 0.0. The
white bar is the result for the experiments where con-
trol forecast was updated using the static background
error covariance model. We denote in this subsection
4b the results for the white bar as OI. Note that the
difference between the OI and the � � 1.0 experiments
is that the background forecast for the former was from
the single control forecast whereas for the latter it was
from the ETKF ensemble-mean forecast.

Consider first the characteristics of the 50-member

hybrid in Fig. 5 with localization (black bars) and with-
out (hatched). The optimal � for the hybrid scheme was
0.4 for all three norms, both with and without covari-
ance localization. When the background error covari-
ance was purely from the static covariance model; that
is, � � 1.0, the analysis error was less than the error of
the OI control simulation, which presumably was be-
cause the background forecast from the ensemble mean
was more accurate than the control run; a similar result
was shown in the perturbed-observation experiments in
Hamill et al. (2000). The covariance localization ap-
plied when updating the mean improved the analysis of
the hybrid scheme when � � 0.8.

Now consider the EnSRF and the hybrid’s relative
performance. The localization scale that produced the
smallest rms error for the EnSRF in this experiment
was 25 000 km. Depending on the norm, the best per-
formance of the hybrid scheme was slightly worse than
or similar to that of the EnSRF. Typically, more than

FIG. 5. Root-mean-square analysis error for kinetic-energy norm, upper-layer thickness ��2

norm, and surface � norm for 50-member ensembles. The black bars are results for the hybrid
ETKF–OI scheme with localization. The hatched bars are results for the hybrid ETKF-OI
with no localization. The gray bars are results for the EnSRF. The white bar is for the OI
experiment.
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90% of the improvement of the EnSRF over the OI was
achieved by the hybrid scheme. Less severe localization
was needed in the hybrid than in the EnSRF to achieve
the best performance of the analysis. This was because
the hybridization with the static covariance model al-
ready ameliorated the sampling error of the ensemble
covariance. The hybridized static covariance itself (with
no help from covariance localization on the ensemble
covariance) can avoid filter divergence for the hybrid
scheme.

Now consider results from the smaller 20-member
ensemble (Fig. 6). Compared with the 50-member re-
sults in Fig. 5, both the hybrid and the EnSRF were less
accurate. The best-performing hybrid and the best-
performing EnSRF were still more accurate than the
OI. The best-performing hybrid still achieved a large
portion of the improved accuracy of the best-
performing EnSRF over OI; 71% and 82% of the im-
provement between OI and the EnSRF was achieved
by the hybrid for the kinetic energy and for the second-
layer thickness norms, respectively. In the surface �
norm, the best-performing hybrid was better than the
best-performing EnSRF. The optimal localization scale

for the EnSRF was reduced to 15 000 km compared
with 25 000 km for the 50-member runs. Compared with
the 50-member runs, a tighter localization was also used
for the hybrid scheme. The covariance localization
scales for the localized hybrid were 15 000, 15 000,
15 000, 35 000, and 45 000 km for � � 0.0, 0.2, 0.4, 0.6,
and 0.8.

When the ensemble size was further reduced to 10
members, the EnSRF experienced filter divergence for
localization scales greater than 5000 km (not shown).
The analyses for the EnSRF at 5000-km localization
were better than at 3000 km, but they were worse than
the optimal hybrid scheme. For the surface � norm, the
EnSRF was even worse than the OI. The hybrid still
performed better than the OI.

Figure 7 shows the results when the ensemble size
was further reduced to five members. The EnSRF ex-
perienced filter divergence for all localization scales
tried. However, the hybrid scheme with localization still
performed slightly better than the OI (Fig. 7). In Fig. 7,
the localizations were 15 000, 15 000, 25 000, and 35 000
km for � � 0.2, 0.4, 0.6, and 0.8 respectively. The hybrid
with no covariance localization did no better than at

FIG. 6. As in Fig. 5 but for the 20-member ensembles.
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� � 1.0 (not shown). The analyses at � � 1.0 were still
slightly more accurate than the OI due to the use of the
ensemble mean forecast instead of the single control
forecast as the background forecast.

The results for 5- and 10-member ensembles indicate
that the hybrid scheme was more robust than the
EnSRF when the ensemble size was small. Note also
that for 5-member ensembles, the hybrid did not expe-
rience filter divergence for � � 0.2, even with no co-
variance localization applied. This indicates that the
static background-error covariance stabilized the filter.
Figures 5–7 also show that with decreasing ensemble
size, the improvement of the hybrid and EnSRF over
OI became smaller, as expected due to the decreasing
quality of the ensemble-based covariances.

As discussed above, the optimal localization scales of
the EnSRF were shorter for smaller ensembles. The
optimal localization scale of the EnSRF was larger than
what may have been expected by other studies with the
same ensemble size (e.g., Hamill et al. 2001; Houteka-
mer et al. 2005). The possible reasons are (i) the model
resolution in this experiment was coarse, T31, and the
covariance localization scale for a coarse-resolution

model may be larger than that for a fine-resolution
model that can resolve small-scale features; (ii) the best
localization scale for the EnSRF is longer than that for
the EnKF, because the EnKF introduces noise through
the perturbation of observations (Whitaker and Hamill
2002); and (iii) the two-layer primitive equation model
in this experiment did not include an initialization step,
to efficiently damp the gravity wave noise generated by
the imbalance due to a short localization scale, and the
explicit fourth-order Runge–Kutta time integration
scheme also failed to damp these fast-propagating wave
motions. Thus an imbalanced background inherited
from the previous assimilation cycle together with the
imbalance introduced by the EnSRF assimilation may
have accumulated during the assimilation cycles, more
acutely so with a more severe localization. Perhaps this
aspect could have been better controlled with a differ-
ent time integration scheme or an explicit initialization.

b. Similarity of hybrid and EnSRF covariance
models

To compare the background-error covariance models
from the hybrid and the EnSRF, we performed single-

FIG. 7. As in Fig. 5 but for the 5-member ensembles.
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observation experiments and plotted the analysis incre-
ment associated after assimilating the observation. For
illustration, we conducted the experiment based on the
background ensemble at the 100th data assimilation
cycle from the experiment above. Figure 8 shows the
results for the 50-member hybrid scheme with the best
coefficient � � 0.4, and a covariance localization scale
of 35 000 km. Figure 9 shows the results for the 50-
member EnSRF with its best covariance localization
scale of 25 000 km. The contours are the background
ensemble mean of upper-layer zonal wind, meridional
wind, and thickness, at the 100th cycle. The colors are
the analysis increment from the assimilation of one ��2

observation with the value of 3 J kg�1 K�1 smaller than
the mean background at 47°N, 108°W. Both increments
from the hybrid and the EnSRF were aligned along the
flow pattern, and the wind increment appeared to be
dynamically consistent with the layer thickness incre-
ment, for example, a cyclonic wind was associated with
a decrease of layer thickness around the observation
site. The patterns of the increments from the hybrid and
the EnSRF were similar. Similar plots (not shown) at
the 200th data assimilation cycle showed the pattern of
the analysis increments was oriented along the back-
ground flow of the 200th day. Hence, both background
error covariance models from the hybrid and EnSRF
were flow dependent and similar to each other. As ex-
pected, the increment when the background error co-
variance was estimated purely from the static back-
ground error covariance did not align with the flow
pattern (not shown), which is consistent with previous
studies (e.g., HS00; Parrish and Derber 1992). The OI
increment of the second-layer thickness around the ob-
servation at 47°N, 108°W, was elliptical. Unlike the in-
crements of the hybrid (Fig. 8c) and the EnSRF (Fig.
9c), the OI increment was not parallel to the southwest–
northeast oriented jet; that is, the “flow of the day,” but
rather elongated in the west–east direction. The OI
wind increments, although dynamically consistent with
the layer thickness increment, were not oriented along
the flow of the day either.

c. Comparison of maximal perturbation growth
rates

A desirable property of an ensemble of initial condi-
tions is an appropriately rapid growth of the subsequent
forecast perturbation. One useful metric for this is the
fastest growth within the ensemble subspace during a
short lead time (Palmer et al. 1998). This can be esti-
mated by the following method. First, we assumed for a
short-term forecast that the dynamic operator M was
linear, that is,

Xb � MXa. �22�

We then identified the direction in the initial ensemble
perturbation subspace where the subsequent amplifica-
tion was maximized in a chosen norm. In other words,
we found the vector of linear combination coefficients b
to apply to the initial perturbation such that

max�bT�Xb�TSXbb

bT�Xa�TSXab�. �23�

Here S defines a particular norm. In this case we chose
a global kinetic-energy norm and S was a diagonal ma-
trix. As shown in Bishop and Toth (1999), b actually
was the leading eigenvector of ��1/2DT(Xb)SXbD��1/2

where � and D were the eigenvalue and eigenvector
matrices of (Xa)TSXa, and the corresponding eigen-
value was the maximal growth.

Figure 10 shows the averaged 24-h maximum growth
in the global kinetic-energy norm within the ETKF and
EnSRF ensemble subspaces for the 50-member, 20-
member, and 10-member runs.4 Each bar corresponds
to the covariance localization scale and weighting coef-
ficient �that produced the smallest rms analysis errors.
The maximum growth in the ETKF ensemble subspace
was larger than that in the EnSRF ensemble subspace.
We speculate the slower maximal growth of the EnSRF
may be due to the imbalanced perturbations induced by
the covariance localization (Mitchell et al. 2002; Lorenc
2003; HM05). Note that no covariance localization was
applied when the ETKF updated the ensemble pertur-
bations (section 2a).

d. Initial-condition balance

In an operational data assimilation system, an ex-
plicit or implicit initialization is typically utilized, oth-
erwise imbalances between the mass, momentum, and
diabatic heating in the analysis can produce large-
amplitude gravity waves. However, initialization re-
quires extra computational cost. Hence a data assimi-
lation technique that itself can produce balanced initial
condition is desirable.

The mean absolute tendency of surface pressure
(Lynch and Huang 1992) is a useful diagnostic of the
amount of imbalance for an analysis generated by a
data assimilation scheme. Surface � is the quantity
analogous to the surface pressure in this two-layer
primitive equation model. To examine surface � ten-
dencies, we reran forecasts from the analysis ensembles
to 24-h lead, producing output every hour. We then

4 For the 5-member ensemble, the EnSRF experienced filter
divergence, so no calculations of Eq. (23) were performed.
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FIG. 8. A snapshot (at the 100th analysis cycle) of the ensemble mean upper-layer wind (U, V ) and
thickness (��2) increments for a single �3 J kg�1 K�1 ��2 observation increment for the hybrid scheme
with � � 0.4 and a 35 000-km localization scale. The black dot is the observation location. The contours
and color shades are the background ensemble mean and the analysis increment at the 100th cycle for
(a) upper-layer U wind (m s�1), (b) upper-layer V wind (m s�1), and (c) upper-layer thickness ��2

(J kg�1 K�1). The contour intervals for the background mean are (a) from �20 to 45 m s�1 with a 5 m s�1

interval, (b) from �24 to 28 m s�1 with a 4 m s�1 interval, and (c) from 75 to 450 J kg�1 K�1 with a 25
J kg�1 K�1 interval.
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calculated the hourly surface Exner function tenden-
cies. Figure 11 shows the mean absolute tendency of the
hourly surface � averaged over global grids, all en-
semble members, all times, and the 23-hourly tendency

snapshots from the 50-member ensemble forecasts. As
expected, the EnSRF tendencies were larger than the
truth run tendency, and this discrepancy was greater
when the localization length scale was shorter. For the

FIG. 9. Same as Fig. 8, but for the EnSRF with localization scale of 25 000 km.
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hybrid, covariance localizations applied when updating
the mean degraded the balance. At small �s, where
more severe localizations were applied, the analyses
were more imbalanced. If no covariance localization
was applied for the hybrid, the analyses were more bal-
anced, with less weight placed on the static background
error covariance. Note the static covariance con-
structed in this study only ensured climatological bal-
ance, which was not flow-dependent. For the 50-
member ensembles, the optimal analyses of the hybrid
were slightly more balanced than that of the EnSRF.
For small ensemble size (not shown), it was apparent
that the hybrid analysis was more balanced than the
EnSRF. This result suggests that relative to the hybrid,
the EnSRF may be more in need of an explicit initial-
ization step or to use a time integration scheme with
extra numerical damping of gravity waves.

e. Spread–skill relationships

To measure a spread–skill relationship, we used a
method similar to that used in Wang and Bishop (2003)
and Majumdar et al. (2002a). We first produced a scat-
terplot where the ordinate and abscissa of each point
were the squared analysis error and the analysis en-
semble variance for a particular variable of interest,

respectively. We collected samples over all grid points
and all analysis cycles. We then divided these points
into four equally populated bins, arranged in order of
increasing ensemble variance. Next, we averaged the
squared analysis error and analysis ensemble variance
separately for each bin. We then plotted the square
roots of the averaged squared analysis error against the
square roots of the averaged analysis ensemble vari-
ance. The connecting curve described the relationship
between the analysis ensemble spread and the rms
analysis error. Figure 12 shows an example of such
curves of surface � for the hybrid with � � 0.6 and
localization scale of 35 000 km, and the EnSRF with
localization length scale equal to 15 000 km for the
20-member ensembles. Both correspond to the configu-
ration that produced the smallest rms errors in Fig. 6.
There were two aspects of the curve that we were in-
terested to examine. First, after further averaging the
values of the four points, we found that both schemes’
ensemble spread was approximately equal to their rms
analysis error, which means the ensemble spreads were
reliable overall. Second, we examined whether spread
was an accurate predictor of the error for the four in-
dividual subsets. Ideally, such spread–skill curve should
follow the 45° reference line. In Fig. 12, the ensemble
spreads of both schemes were suboptimal; they were
negatively biased when the analysis error was small and
positively biased when the analysis error was large. The

FIG. 10. Averaged maximum 24-h perturbation growth in global
kinetic-energy norm within the ensemble perturbation subspace
of the ETKF (black bars), and the EnSRF (gray bars) for 50-
member, 20-member, and 10-member ensembles. Each bar cor-
responds to the configuration, i.e., localization scale and �, that
produced the most accurate analyses.

FIG. 11. Mean absolute surface � tendency (J kg�1 K�1 h �1)
averaged globally, over the subsequent twenty-three 1-h forecast
periods and over all ensemble members for 50-member en-
sembles. Bars are defined the same as in Fig. 5, but the white bar
is for the model nature run.
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curves for the hybrid and the EnSRF were approxi-
mately parallel under the surface � norm (Fig. 12), the
wind norm and layer thickness norm (not shown). This
indicated that the ETKF and the EnSRF ensembles had
similar skill in estimating the error variance. Note the
range of the hybrid analysis error variance in Fig. 12
was larger than that of the EnSRF, which indicated a
larger spatial and/or temporal variability in the magni-
tude of the hybrid analysis errors. The biases of the
spread–skill curves were due to the deficiencies of the
ensembles generated in each system. In the perfect
model experiment conducted here, it was presumably
because of the sampling error and the approximations
made in estimating the error covariances.

5. Conclusions and discussion

In this paper, we compared the skill of the hybrid
ETKF–OI and the EnSRF analysis schemes in an ob-
serving-system simulation experiment. A perfect model
and simplified observation network were assumed, and
a two-layer primitive equation model was used. Static
background error covariances for the OI were con-
structed from a large inventory of historical forecast
errors. The EnSRF analyses provided a reference for
the expected analysis accuracy that may be obtained
from a state-of-the-art ensemble-based data assimila-
tion method. However, the EnSRF assimilation method

is expected to be computationally expensive in opera-
tional usage, as it requires parallel assimilation cycles
for each member and costs scale linearly with the num-
ber of observations, which increase each year. In the
hybrid scheme, the ensemble mean was updated utiliz-
ing a hybridized ETKF ensemble covariance and static
covariance models. According to previous work (e.g.,
Lorenc 2003; Buehner 2005; Wang et al. 2007), this can
be conveniently adapted to the existing operational
variational codes, which handle large numbers of ob-
servations more efficiently. The ensemble perturba-
tions in the hybrid were updated by the computation-
ally efficient ETKF scheme.

Results from this paper demonstrated that for 50-
member ensembles, the analyses of the hybrid scheme
were almost as accurate as those from the EnSRF. A
large fraction of the EnSRF’s improvement over OI
was achieved by the hybrid scheme. For 20-member
runs, under certain norms, the analyses of the hybrid
were more accurate than the EnSRF. Further reducing
the ensemble size to five members, the EnSRF exhib-
ited filter divergence whereas the analyses of the hybrid
were still better than that of the OI analyses. The ability
of the ETKF ensemble spread to predict the ensemble-
mean analysis error was similar to the EnSRF. Further,
the initial conditions of the hybrid were more balanced
than those of the EnSRF, especially when the ensemble
size was small. The maximum growth in the ETKF en-
semble perturbation subspace was larger than that in
the EnSRF ensemble perturbation space. In summary,
the hybrid is nearly as accurate as the full EnSRF for
large ensembles, it is more robust for smaller en-
sembles, and it may be more attractive operationally
because of its reduced computational expense.

The hybrid can also be adapted into existing varia-
tional schemes relatively easily. Variational analysis
schemes typically perform a preconditioning with re-
spect to the background terms in order to speed up the
convergence rate of minimization. As discussed by
Lorenc (2003), Buehner (2005), and Wang et al. (2007),
to extend this to a hybrid scheme, in the cost function
one can add another background term with extended
control variables preconditioned on the square root of
the ensemble covariance. The resulting analysis incre-
ment is then equal to the weighted sum of the standard
3DVAR increment and that associated with the en-
semble-related extended control variables. Experi-
ments with the framework proposed by Lorenc (2003),
Barker (1998), and D. Barker (2005, personal commu-
nication) suggested that only modest extra cost relative
to the standard 3DVAR would be needed. Observa-
tion-space preconditioning, such as the Naval Research
Laboratory Atmospheric Variational Data Assimila-

FIG. 12. The relationship between the surface � analysis spread
and rms analysis error for the 20-member hybrid (solid) and the
20-member EnSRF (dashed).
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tion System (NAVDAS; Daley and Barker 2001), can
also incorporate the ensemble covariance easily by lin-
early combining the ensemble covariance with the stan-
dard static covariance.

The idea of combining the ETKF ensemble covari-
ance and the static background error covariance, may
be extended to the 4DVAR framework also. The in-
corporation of the ensemble covariance may improve
its initial background-error covariance estimate and
thus improve the 4DVAR analysis. In this case, the
ETKF transformation matrix is calculated with obser-
vations distributed in both space and time.

We are now comparing the EnSRF and the hybrid
scheme within an imperfect-model environment where,
in particular, we consider the model errors due to trun-
cation. Preliminary results show that the analyses of the
hybrid scheme are still approximately as accurate as
those from the EnSRF. The hybrid and the EnSRF
were still more accurate than the OI, and the improve-
ment of both was less than in the perfect model experi-
ment. In these experiments, the structure of the model
error were known and relatively well represented in the
ensemble. In operational forecasting, the structure and
amplitude of the error that is because model error is
largely unknown. In this situation the hybrid may be
more compelling than the full ensemble filters because
the static covariance can serve as a plausible catch-all
for unknown model errors. EB04’s simple model results
supported this argument.

The simulated observational network in the current
study (Fig. 2) is of course much simpler and more uni-
form than the real observing network. Discussions
about the advantage of the hybrid over the 3DVAR
with respect to different observational networks can be
found in HS00. In general, they found less improve-
ment of the hybrid over 3DVAR for data-rich and uni-
form networks than for data-poor and nonuniform net-
works. Comparison of the hybrid and the EnSRF with
different configurations of the observational network
may be studied in future work. In general, the best
linear combination coefficient � for the hybrid and the
best covariance localization scale of the EnSRF can be
expected to vary depending on the ratio of the number
of observations and the ensemble size.

The encouraging results of the hybrid in our simple
system and the fact that the hybrid is straightforward to
implement in an operational variational system strongly
motivate further exploration of the hybrid scheme in
operational settings.
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APPENDIX A

Derivation of an Improved ETKF Formulation
under the White Noise Assumption

Here, we identify gross bias in the ETKF formulation
[Eq. (7)] given in Bishop et al. (2001) and Wang et al.
(2004), which occurs when the ensemble size K is sig-
nificantly less than the rank r of the true forecast error
covariance matrix H̃P fH̃T. We shall refer to this version
of the ETKF as the “old ETKF”. We believe that the
formulation given by Eq. (8) is superior to that given by
Eq. (7) because (i) extensive 1D simple-model experi-
ments showed that the analysis error variance estimate
by Eq. (8) is closer to an optimal scheme and (ii) ex-
periments in this paper also showed that formula Eq.
(8) delivered superior performance to Eq. (7). Unfor-
tunately, Eq. (8) was arrived at by a series of guesses,
and not by a rigorous analysis of the state estimation
equations and how they might be approximated. As
such, the purposes of this appendix are modest. We
merely wish to highlight the bias in Eq. (7) and indicate
aspects of the train of thought that motivated the series
of guesses that led to Eq. (8).

The sample background forecast-error covariance of
a K-member ensemble in the normalized observation
space H̃P eH̃T is given by

H̃PeH̃T �

�
k�1

K

�H̃x �b
k ��H̃x �b

k �T

K � 1
, �A1�

where H̃ is the normalized observation operator; that is,
H̃ � R�1/2H, and x �b

k is the deviation of the kth member
from the ensemble mean. With the innovation-based
inflation factor applied (Wang and Bishop 2003), the
sample covariance in Eq. (A1) provides a reasonable
estimate of the total forecast error variance on the en-
tire normalized observation space; that is,

Tr�H̃PeH̃T� � Tr�E�ET� � Tr��� � �
j�1

K�1

�j

� Tr�H̃P fH̃T�, �A2�

where E � [e1, e2, . . , ej, . . , eK�1] lists the K � 1
orthonormal eigenvectors and the diagonal matrix � �
diag{�1, �2, . . , �j, . . , �K�1} lists the corresponding non-
zero eigenvalues of H̃P eH̃T; and H̃P fH̃T is the true fore-
cast error covariance in normalized observation space.
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Note that the dimensions of E, �, H̃P eH̃T, H̃P fH̃T are
p � (K � 1), (K � 1) � (K � 1), p � p, and p � p,
respectively, where p is the number of observations.

When K is significantly less than the rank r of H̃P fH̃T,
the sample covariance [Eq. (A1)] will generally over-
estimate the forecast error variance within the vector
space spanned by the ensemble perturbations. To see
this, we consider the special case where the true fore-
cast error covariance matrix in normalized observation
space H̃P fH̃T has r nonzero eigenvalues all of which
have the same value �; that is

H̃P fH̃T � V	IVT and VTV � I, �A3�

where V is a p � r matrix and I is the r � r identity
matrix. Equation (A3) defines what we refer to as the
white noise assumption. From Eq. (A3), Tr(H̃P fH̃T) �
r� and thus from Eq. (A2)

�
j�1

K�1

�j � r	. �A4�

For simplicity, we will assume that all ensemble pertur-
bations can be precisely represented as a linear combi-
nation of the true eigenvectors V (This is always pos-
sible if the ensemble perturbations are random draws
from a distribution with mean equal to zero and cova-
riance equal to the true error covariance). Equation
(A4) shows that the sum of all of the r nonzero eigen-
values of the entire system is equal to the sum of the
K � 1 eigenvalues �j corresponding to the K � 1 or-
thogonal eigenvectors of H̃PeH̃T. Note that, in general,
r k K. Note also that the true error variance in one
of the sample covariance eigenvector directions ej is
given by

ej
TH̃P fH̃Tej � 	. �A5�

Further from Eq. (A4),

	 �

�
j�1

K�1

�j

r
�

�K � 1�

r
�, �A6�

where � � [1/(K � 1)] �K�1
j�1 �j gives the mean of the

sample covariance eigenvalues. Comparison of Eqs.
(A5) and (A6) shows that the eigenvalue �i overesti-
mates the error variance in the direction associated
with its eigenvector by the factor r/(K � 1) on average.5

Noting that the sample analysis error covariance by

the old ETKF (Bishop et al. 2001; Wang and Bishop
2003; Wang et al. 2004) is

H̃SaH̃T � E��� � I��1ET � �
i�1

K�1

ei

�i

�i � 1
ei

T. �A7�

It is evident from Eq. (A7) that the filtering properties
of the ETKF error covariance update equation are sen-
sitive to the eigenvalues �i. Thus, it seems appropriate
to replace these eigenvalues by a set of eigenvalues that
better reflect the error variance within the ensemble
subspace. In other words, it suggests that we replace
Eq. (A7) with

H̃SaH̃T � aE����� � I��1ET � a �
i�1

K�1

ei

��i

��i � 1
ei

T.

�A8�

The factor 	 in Eq. (A8) gives the percentage of total
variance that projects onto the ensemble subspace;
that is,

� �
Tr�ETH̃P fH̃TE�

Tr�H̃P fH̃T�
. �A9�

This choice is motivated by the fact that Eq. (A9) gives

� �
K � 1

r
, �A10�

which according to the previous discussion is precisely
what is required under the white noise assumption.
Please refer to appendix B to see how to estimate 	
from Eq. (A9).

The factor a in Eq. (A8) is motivated by the follow-
ing arguments. While E	�(	� � I)�1ET would improve
the filtering properties for directions that lie within the
ensemble subspace, it does not improve the filtering
properties in directions that lie outside the ensemble
subspace. We hypothesize that a coefficient a will be
required in order to ensure relatively unbiased filtering
properties in directions that do not lie entirely within
the ensemble perturbation vector subspace. In other
words, we search for an a such that the expected sample
analysis error covariance will give a relatively unbiased
estimate of the true analysis error covariance, H̃PaH̃T;
that is,

H̃PaH̃T � �H̃SaH̃T
 � a��
j�1

K�1

ej

��j

��j � 1
ej

T� .

�A11�

In Eq. (A11) the angle bracket on the far right side
represents the average over an infinite number of in-
dependent calculations of E	�(	� � I)�1ET obtained

5 This type of property was obtained and discussed in the con-
text of both the background and observation error covariances by
Kepert (2004).
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from a corresponding infinite number of independent
K-member ensembles.

Next we choose a so that it satisfies Eq. (A11) under
the white noise assumption. Under this assumption, the
true analysis error covariance is (Wang and Bishop
2003)

H̃PaH̃T � V	��	 � 1�IVT � �
i�1

r

vi

	

	 � 1
vi

T.

�A12�

Substituting Eq. (A12) into Eq. (A11), premultiplying
by vT

i and postmultiplying by vi one obtains

	

	 � 1
� a�vi

T��
j�1

K�1

ej

��j

��j � 1
ej

T�vi�
� a��

j�1

K�1 � ��j

��j � 1�vi
Tejej

Tvi� . �A13�

Note that the term vT
i eje

T
j vi represents the square of the

projection of the ith true eigenvector on the jth sample
covariance eigenvector. Under the white noise approxi-
mation, the error variance associated with vi is the same
for all i. Hence, if the ensemble perturbations repre-
sented a random draw from the true forecast error co-
variance matrix, the eigenvalues �j of the sample co-
variance matrix would be entirely unrelated to and un-
correlated with vT

i eje
T
j vi. With this assumption Eq.

(A13) can be rewritten in the form,

	

	 � 1
� a �

j�1

K�1 �� ��j

��j � 1���vi
Tejej

Tvi
. �A14�

Also, the direction em is statistically interchangeable
with the direction en under the white noise assumption.
Hence, �vT

i eje
T
j vi
 and �(	�j/	�j � 1)
 have the same

value for all j. Furthermore, note that we could aug-
ment the K � 1 orthonormal basis E using (for ex-
ample) Gramm–Schmidt orthogonalization to obtain
an expanded r-dimensional subspace EE that precisely
spanned the same space of the true eigenvectors V.
Hence,

�vi
TEE�EE�Tvi
 � 1 � �

j�1

r

�vi
Tejej

Tvi
 � r�vi
Tejej

Tvi
.

�A15�

Equation (A15) implies that

�vi
Tejej

Tvi
 �
1
r

. �A16�

Furthermore, under the white noise assumption, we as-
sume that �j approximates � � [1/(K � 1)] �K�1

i�1 �i .

Simple model experiments have shown that the accu-
racy of this approximation increases as the ratio (K/r)
decreases. Thus from Eqs. (A6) and (A10), 	�j � �,
which leads to

	

	 � 1
� �� ��j

��j � 1��. �A17�

Using Eqs. (A17) and (A16) in Eq. (A15) then gives

a �
r

K � 1
�

1
�

. �A18�

Note from Eq. (A16), (1/a) � (K � 1)/r � 	 is the
expected squared projection of a true eigenvector onto
K � 1 ensemble-based eigenvectors under the white
noise approximation. It is directly related to the ex-
pected angle subtended between ensemble eigenvec-
tors and true eigenvectors. Using Eq. (A18) in Eq.
(A11) suggests that if we define the sample analysis
error covariance as

H̃SaH̃T � E���� � I��1E � �
j�1

K�1

ej

�j

��j � 1
ej

T,

�A19�

the expected value of it will provide a less-biased esti-
mate of the true analysis error covariance H̃PaH̃T than
the old ETKF. From Eq. (10), the sample analysis-error
covariance in state space that is consistent with Eq.
(A19) is

Sa � XbC��� � I��1CT�Xb�T��K � 1�. �A20�

Thus, the new transformation matrix given by Eq. (8) is
recovered.

While much of the argument given above relies on
the white noise approximation, simple model experi-
ments have been performed and have shown that the
superiority of the new ensemble update Eq. (8) over the
old update Eq. (7) gradually diminishes as the white
noise assumption is relaxed. As the true error distribu-
tion becomes more red, the true error variance of the
forecast is better spanned by the ensemble subspace,
the parameter 	 tends toward unity and the differences
between the new and the old formulations diminish. In
the limit of a true eigenvalue spectrum that contains
fewer nonzero eigenvalues than the number of en-
semble members, 	 � 1 and the differences between
Eqs. (8) and (7) vanish.

APPENDIX B

Estimating the � Parameter in Eq. (A9)

To estimate the 	 factor in Eq. (A9) we need to
estimate the total forecast error variance in normalized
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observation space Tr(H̃P fH̃T) and its projection onto
the ensemble subspace Tr(ETH̃P fH̃TE). The difference
between observation and forecast vectors; that is, the
innovations, enables both of these tasks.

First, note that because

Tr�H̃P fH̃T � I� � Tr��R�1�2y � H̃xb��R�1�2y � H̃xb�T


� ��R�1�2y � H̃xb�T�R�1�2y � H̃xb�
,

�B1�

it follows that the approximation

Tr�H̃P fH̃T� � �R�1�2y � H̃xb�T�R�1�2y � H̃xb� � p,

�B2�

where p is the number of observations, gives an unbi-
ased estimate of the trace of the total forecast error
variance in normalized observation space. Note the sec-
ond equality holds in Eq. (B1) because both sides are
equal to the sum of the variances of all elements in
(R�1/2y � H̃xb). To estimate the accuracy of the ap-
proximation [Eq. (B2)], recognize that

R�1�2y � H̃xb � �
i�1

p


ivi , �B3�

where vi is the ith eigenvector of the normalized inno-
vation covariance H̃P fH̃T � I and �i is a random vari-
able with mean zero and variance equal to the ith eigen-
value �i of H̃P fH̃T � I. Equation (B3) implies that

�R�1�2y � H̃xb�T�R�1�2y � H̃xb�

��R�1�2y � H̃xb�T�R�1�2y � H̃xb�

�

�
i�1

p


i
2

�
i�1

p

�i

�

�
i�1

p


i
2

p�
.

�B4�

Note that if the eigenspectrum of H̃P fH̃T � I were flat
(white) with �i � constant for all i, and �i is normally
distributed, then the numerator of Eq. (B4) would be a
�2 variable with p degrees of freedom (Ross 1998, p.
267). Hence, in this case, Eq. (B4) tends to unity as p
tends to infinity. Tables of �2 statistics can be used to
determine the reliability of estimates obtained through
Eq. (B2).

In typical atmospheric and oceanographic applica-
tions, however, little is known about the eigenvalue
spectrum of the innovation covariance matrix. In such
cases, the only meaningful test of the accuracy of Eq.
(B2) is to check the variance of a sample of squared
innovations. Because Eq. (B2) is an unbiased estimate,
small variance is indicative of estimation accuracy.

Wang and Bishop’s (2003) experience in using Eq. (B2)
to generate an inflation factor for an old-ETKF en-
semble in a low resolution (T42) global circulation
model suggests that, for the atmosphere, the innovation
associated with the global rawinsonde network has
enough degrees of freedom to make Eq. (B2) useful. If
the observational network is sparse, assuming that the
distributions from which [R�1/2y � H̃xb]T[R�1/2y �
H̃xb] are sampled have a degree of time invariance,
then the approximation

Tr�H̃P fH̃T� � �R�1�2y � H̃xb�T�R�1�2y � H̃xb� � p,

�B5�

can be used. The overbar in Eq. (B5) represents the
average of [R�1/2y � H̃xb]T[R�1/2y � H̃xb] computed
over a period of time.

Having obtained a plausible estimate of Tr(H̃P fH̃T),
one also needs to estimate Tr(ETH̃P fH̃E). Replacing
H̃P fH̃T � I by ET(H̃P fH̃T � I)E in Eq. (B1) leads to the
approximation

Tr�ETH̃P fH̃TE� � �R�1�2y � H̃xb�TEET�R�1�2y � H̃xb�

� �K � 1�, �B6�

and the ET(H̃P fH̃T � I)E counterpart of Eq. (B4) is

�R�1�2y � H̃xb�TEET�R�1�2y � H̃xb�

��R�1�2y � H̃xb�TEET�R�1�2y � H̃xb�

�

�
i�1

K�1

�i
2

�
i�1

K�1


i

�

�
i�1

K�1

�i
2

�K � 1�

,

�B7�

where �i is the ith eigenvalue of the (K � 1) � (K � 1)
normalized innovation covariance ET(H̃P fH̃T � I)E, �i is
a random variable with mean zero and variance �i. In
Eq. (B7) � gives the mean of the eigenvalues.

From our previous discussion of Eqs. (B2) and (B4),
large ensemble sizes K would generally be required in
order to give Eq. (B6) a high level of accuracy. If only
a small ensemble is available, similarly to Eq. (B5), the
approximation

Tr�ETH̃P fH̃TE� � �R�1�2y � H̃xb�TEET�R�1�2y � H̃xb�

� �K � 1� �B8�

can be used. Given Eqs. (B5) and (B8), the estimated 	
factor is given by Eq. (9). In the current experiment,
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the overbars in Eqs. (B5) and (B8) are the average of
the two weeks of data previous to the current time.
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