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a b s t r a c t

Sea surface temperature (SST) anomalies are often both leading indicators and important drivers of mar-
ine resource fluctuations. Assessment of the skill of SST anomaly forecasts within coastal ecosystems
accounting for the majority of global fish yields, however, has been minimal. This reflects coarse global
forecast system resolution and past emphasis on the predictability of ocean basin-scale SST variations.
This paper assesses monthly to inter-annual SST anomaly predictions in coastal ‘‘Large Marine
Ecosystems’’ (LMEs). We begin with an analysis of 7 well-observed LMEs adjacent to the United States
and then examine how mechanisms responsible for prediction skill in these systems are reflected in pre-
dictions for LMEs globally. Historical SST anomaly estimates from the 1/4� daily Optimal Interpolation
Sea Surface Temperature reanalysis (OISST.v2) were first found to be highly consistent with in-situ mea-
surements for 6 of the 7 U.S. LMEs. Thirty years of retrospective forecasts from climate forecast systems
developed at NOAA’s Geophysical Fluid Dynamics Laboratory (CM2.5-FLOR) and the National Center for
Environmental Prediction (CFSv2) were then assessed against OISST.v2. Forecast skill varied widely by
LME, initialization month, and lead but there were many cases of high skill that also exceeded that of
a persistence forecast, some at leads greater than 6 months. Mechanisms underlying skill above persis-
tence included accurate simulation of (a) seasonal transitions between less predictable locally generated
and more predictable basin-scale SST variability; (b) seasonal transitions between different basin-scale
influences; (c) propagation of SST anomalies across seasons through sea ice; and (d) re-emergence of pre-
vious anomalies upon the breakdown of summer stratification. Globally, significant skill above persis-
tence across many tropical systems arises via mechanisms (a) and (b). Combinations of all four
mechanisms contribute to less prevalent but nonetheless significant skill in extratropical systems.
While continued refinement of global climate forecast systems and observations are needed to improve
coastal SST anomaly prediction and extend predictions to other ecosystem relevant variables (e.g., salin-
ity), present skill warrants close examination of forecasts for marine resource applications.

Published by Elsevier Ltd.
1. Introduction indicators and important drivers of these ecosystem fluctuations
Marine ecosystems are strongly affected by seasonal to
decadal-scale climate variations (e.g., Lehodey et al., 2006). Sea
surface temperature (SST) anomalies are often both leading
(Drinkwater et al., 2010; Mueter et al., 2009; Ottersen et al.,
2010). Indeed, ecosystem states are often characterized as ‘‘warm’’
or ‘‘cold’’, with the understanding that this carries implications for
diverse ecosystem characteristics including fish and zooplankton
distributions (e.g., Beaugrand, 2003; Mackas et al., 2007; Nye
et al., 2009; Pinsky et al., 2013), fish recruitment (e.g., Hunt
et al., 2011; Kristiansen et al., 2011; Mantua et al., 1997; Planque
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and Fredou, 1999), and phytoplankton bloom and sea ice
phenology (e.g., Stabeno et al., 2001). Skillful prediction of ocean
temperature anomalies thus has considerable potential for use in
dynamic marine resource management (Hobday et al., 2014).

The development of dynamical global climate forecast systems
over the past two decades (e.g., Goddard et al., 2001; Kirtman et al.,
2014) has helped realize this potential. Pioneering applications of
sea surface temperature (SST) anomaly predictions have been
developed for coral bleaching on the Great Barrier Reef (Spillman
and Alves, 2009; Spillman et al., 2011, 2013), avoidance of
southern Bluefin Tuna bycatch in eastern Australia (Hobday
et al., 2011) and salmon farm management in Tasmania
(Spillman and Hobday, 2014). Critical assessment of SST anomaly
prediction skill in global climate forecast systems, however, has
been strongly skewed toward basin-scale modes of SST variation,
particularly the El Nino-Southern Oscillation (ENSO, e.g.,
Barnston et al., 2012 and references therein; Jin et al., 2008). This
emphasis reflects the strong theoretical basis for ENSO predictabil-
ity (Battisti and Hirst, 1989; Bjerknes, 1969; Schopf and Suarez,
1988; Wyrtki, 1975; Zebiak and Cane, 1987), the relative success
of ENSO prediction, and the large impact of ENSO on regional
surface air temperature and precipitation patterns that have long
been a focal point of seasonal prediction efforts (Barnett and
Preisendorfer, 1987; Livezey and Smith, 1999; Livezey and
Timofeyeva, 2008; Peng et al., 2012; Quan et al., 2006;
Ropelewski and Halpert, 1986, 1987). Predicting SST anomalies is
thus often viewed as a first step toward ‘‘user relevant seasonal
climate anomalies’’ (Stockdale et al., 2011).

For marine resources, SST anomalies are of direct interest.
Globally, the total economic value of marine fisheries and associ-
ated industries has been estimated at 225–240 billion dol-
lars year�1 based on 2003 data (Dyck and Sumaila, 2010). Nearly
half of the global marine fish landings contributing to this value
were caught within 100 km of shore in waters less than 100 m deep
(Nellemann et al., 2008). These shelf regions account for only 7.5%
of ocean area, but their disproportionate contribution to global fish
yields provides great impetus for skillful shelf-scale SST anomaly
prediction. Several factors, however, make this difficult. First, global
SST reanalyses often used as ‘‘observations’’ in forecast assessments
can be challenged by sharp hydrographic gradients and complex
water properties in coastal systems (e.g., Barton and Casey, 2005;
Chelton and Wentz, 2005; Hughes et al., 2009; Smit et al., 2013).
Second, the coarse resolution of global forecast systems (�0.5–2�
ocean and atmosphere resolution) degrades the representation of
shelf-scale dynamics (Stock et al., 2011). Third, prominent sources
of local variation disconnected from predictable large-scale
patterns may degrade forecast skill (e.g., Spillman and Alves, 2009).

The objectives of this contribution are to (1) assess seasonal SST
anomaly predictions from two state-of-the-art global climate fore-
cast systems across globally distributed coastal marine ecosys-
tems, and (2) elucidate the mechanisms underlying cases with
high forecast skill; particularly where skill significantly exceeds
that of persistence forecasts. Our analysis begins with a detailed
examination of SST anomaly prediction for 7 well-observed Large
Marine Ecosystems (LMEs) covering United States coastal waters
(Fig. 1). A progressive approach is used to identify forecast bottle-
necks within these systems, starting with an assessment of the
consistency of 1/4� daily Optimal Interpolation Sea Surface
Temperature reanalysis (OISST.v2, Reynolds et al., 2007) against
unprocessed in-situ observations, and ending with an assessment
of mechanisms underlying skill above persistence. We then extend
analysis across LMEs globally to identify additional systems where
achieved skill offers a high potential for marine resource applica-
tions. We conclude with a discussion of the strengths and limita-
tions of seasonal coastal ocean forecasts, including prospects for
improvement.
2. Methods

2.1. Large Marine Ecosystems (LMEs)

LMEs are defined as ‘‘coherent ocean areas generally along con-
tinental margins whose ecological systems are characterized by
similarities in bathymetry, hydrography, and biological productiv-
ity, and whose plant and animal populations are inextricably
linked to one and other in the food chain’’ (Sherman and
Alexander, 1986). While the details of any given LME relative to
this definition can be debated, LMEs have been adopted as units
to implement ecosystem-based marine resource management.
Descriptions of all 66 Large Marine Ecosystems can be found at
www.edc.uri.edu and a map is also included in the Supporting
material.

We begin our analysis with a detailed analysis of the 7 LME’s
shown in Fig. 1: The East Bering Sea (EBS), the Gulf of Alaska
(GoA), the California Current (CC), the Insular Pacific–Hawaiian
Island (IP–H), the Gulf of Mexico (GoM), the Southeast United
States (SEUS) continental shelf, and the Northeast United States
(NEUS) continental shelf. These LMEs benefit from relatively dense
observational networks to build confidence in retrospective anom-
aly estimates. Furthermore, retrospective anomaly estimates
(Reynolds et al., 2007, see Section 2.3) suggest that spatially
resolved SST anomalies at 1/4� resolution are generally coherent
with the LME-average anomaly (mean correlations �0.7, Table 1).
The 7 LMEs offer significant contrasts in area, SST variability,
bathymetry, local dynamics, and adjacent basin-scale processes
(Table 1). As will be shown in Section 3, they also offer significant
contrasts in the success of seasonal SST anomaly forecasts.
Following this, we explore predictions across LMEs globally,
highlighting where mechanisms similar to those responsible for
skill above persistence within the 7 U.S. LMEs contribute to
successful forecasts in other systems.
2.2. Global climate forecast systems

We considered two dynamical seasonal forecast systems: The
NOAA Geophysical Fluid Dynamics Laboratory’s CM2.5-FLOR pre-
diction system (Vecchi et al., 2014) and the National Centers for
Environmental Prediction Climate Forecast System version 2
(Saha et al., 2014). The characteristics of these systems are summa-
rized in Table 2. Each system consists of coupled ocean, atmo-
sphere, and land dynamics components combined with different
approaches for forecast initialization and ensemble forecasting.
CM2.5-FLOR is distinguished by its higher atmospheric resolution
(�50 km) and the availability of 12 month forecasts, while CFSv2
features higher ocean resolution (�50 km over most regions) and
provides 9 month forecasts.

CM2.5-FLOR retrospective forecasts are from the ‘‘B01’’ configu-
ration and use 12 ensemble members initialized on the first of each
month between 1982 and 2009 based on GFDL’s Ensemble Coupled
Data Assimilation system (ECDA, Zhang et al., 2007). Forecasts
were obtained from the GFDL archive, but are also available from
GFDL’s data portal (data1.gfdl.noaa.gov) and, after regridding, in
the North American Multi-Model Ensemble (NMME) database
(Kirtman et al., 2014). Maintaining the native model grid proved
useful for analyzing mechanisms underlying skill above persis-
tence (see Section 2.5). CFSv2 forecast data was obtained for the
same time period from the NMME database. For CFSv2, four fore-
casts, each with a 9-month integration, were made every 5 days
with initializations based on CFSv2 assimilation system (Saha
et al., 2010; Xue et al., 2011). We limited our CFSv2 calculations
to the 16 ensemble members, started within 15–20 days of the
first lead month. That is, forecasts assessed for the 9 month
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Fig. 1. Seven Large Marine Ecosystems subjected to detailed analysis in this study: the eastern Bering Sea (EBS, dark blue); the Gulf of Alaska (GoA, medium blue); the
California Current (CC, light blue); Insular Pacific Islands–Hawaii (IP–H, dark red); the Gulf of Mexico (GoM, blue–green); Southeast United States (SEUS, green); and the
Northeast U.S. (NEUS, orange).

Table 1
Summary of the characteristics of the LMEs subjected to detailed forecast analysis herein. Area is in km2/105. ACC here is the mean correlation of monthly OISST.v2 anomalies
from each 1/4� grid cell with the average anomaly for the LME and provides a measure of the coherence of SST anomalies across the LME. Anomalies were standardized by the
standard deviations of anomalies for each grid cell prior to the calculation. The standard deviation of LME-average monthly anomalies from NOAA OISST.v2 is given by rLME.

LME Area (/105) Mean ACC rLME Notable properties

East Bering Sea (EBS) 11.9 0.71 0.56 Partially enclosed basin; broad shallow shelf; sea-ice present during some seasons
Gulf of Alaska (GoA) 14.2 0.80 0.59 Includes narrow shelf and deeper off-shore waters; broad exposure to ocean basin;

at downstream terminus of North Pacific current
California Current (CC) 22.0 0.72 0.56 Includes narrow shelf and deeper offshore waters; broad exposure to ocean basin;

eastern boundary upwelling system
Gulf of Mexico (GoM) 15.2 0.70 0.44 Partially enclosed basin with mix of shallow shelf and deep off-shore waters
Southeast U.S. (SEUS) shelf 3.0 0.72 0.49 Relatively small, narrow shelf adjacent to western boundary current
Northeast U.S. (NEUS) shelf 3.1 0.73 0.65 Relatively small, shallow shelf system near western boundary current
Insular Pacific–Hawaiian (IP–H) 9.8 0.66 0.41 Oceanic system
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January–September window are based on forecast ensemble mem-
bers initialized during the latter half of December rather than on
January 1st as in CM2.5-FLOR. We note that this puts CFSv2 at a
slight lead-time disadvantage when comparing skill relative to
CM2.5-FLOR.

2.3. Historical SST anomaly estimates

NOAA version 2 optimally interpolated daily high-resolution-
blended sea surface temperature estimates (OISST.v2, Reynolds
et al., 2007) were used to provide spatially and temporally contin-
uous SST anomaly estimates with which to evaluate retrospective
forecasts. The version used herein covers 1981–present and is
constructed via optimal interpolation of SST measurements from
infrared (AVHRR) satellite sensors and in-situ bucket, buoy and
ship-based observations from the ICOADS database (Worley
et al., 2005) to a spatial resolution of 1/4� and a temporal resolu-
tion of 1 day. The e-folding scale for the weighting observation in
the OI scheme ranges from 100 to 250 km.

The ability of OISST.v2 ocean state estimates to resolve the
direction and magnitude of hydrographic anomalies within highly
dynamic coastal systems has not been extensively tested. Where
evaluations of OISST.v2 or other products have been made, results
were mixed (Barton and Casey, 2005; Chelton and Wentz, 2005;
Hughes et al., 2009; Smit et al., 2013). OISST.v2 was thus evaluated
against unprocessed, in-situ observations at the LME-scale prior to
use in forecast evaluation.

In-situ SST measurements for the LME’s in Fig. 1 were
extracted from the 2013 NOAA World Ocean Database (WOD13,
Boyer et al., 2013) for the period 1982–2010, the same period
for which retrospective forecasts were made. OISST.v2 estimates
were sampled at the location and time of each in-situ observation.
A common 1982–2010 reference climatology was then subtracted
from both the WOD13 observations and the OISST.v2 estimates,
yielding paired point anomaly estimates. Since coastal LME’s have
strong spatial and temporal SST gradients, the high-resolution
OISST.v2 climatology was used as the reference, noting that any
deficiencies in the OISST.v2 climatology will be reflected in biases
between WOD13 and OISST.v2-based anomalies. WOD13 and
OISST.v2 anomalies for each LME were binned and the mean
taken at annual, seasonal and monthly intervals. Correlation, bias,
and standard deviations were then calculated to assess the con-
sistency in the sign and magnitude of WOD13 and OISST.v2
anomalies.

OISST.v2 anomalies are also compared with GFDL-ECDA and
NCEP-CFSv2 assimilations used to initialize the forecasts.
OISST.v2 is used within both the GFDL-ECDA and NCEP-CFSv2 data
assimilation schemes (Table 2, Xue et al., 2011; Zhang et al., 2007).
Within CFSv2, OISST.v2 is treated separately from the 3DVAR
scheme used to for other data types. Surface ocean temperatures



Table 2
Summary of forecast system characteristics with relevant references for more details.

Forecast system GFDL CM2.5-FLOR B01 (Vecchi et al., 2014) NCEP CFSv2 (Saha et al., 2014)

Atmospheric/land
model

50 km � 50 km Atmosphere from GFDL’s CM2.5 climate model, LM3 land
model (Delworth et al., 2012)

T126 (�100 km horizontal resolution), 64 sigma-pressure
coordinates
in vertical; NOAH land surface model (Ek et al., 2003)

Ocean/sea ice
model

1� MOM4p1 ocean telescoping to 1/3� meridional spacing near the
equator from GFDL’s CM2.1 climate model (Delworth et al., 2006; Griffies
et al., 2005)

MOM4p0, 1/2� resolution, telescoping to 1/10� meridional spacing
near the equator (Griffies et al., 2004; Saha et al., 2010)

Forecast
initialization

Ocean and ice conditions from GFDL’s Ensemble Coupled Data
Assimilation system (Zhang et al., 2007); atmosphere initialized from
suite of SST forced atmosphere-land-only simulations

NCEP’s Climate Forecast System Reanalysis (Saha et al., 2010; Xue
et al., 2011)

Forecast ensemble
properties

12 Month forecasts of 12 member ensembles started the first of each
month

9 Month forecasts with 4 ensemble members starting every 5th day.
Used 16 ensemble members within 15–20 days of the first of the
month for analyses herein
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are strongly relaxed toward OISST.v2, making good agreement
inevitable. In GFDL-ECDA, however, OISST.v2 is treated as other
data types within the Ensemble Kalman Filter approach. The need
to reconcile the model with OISST.v2 at coastal scales within the
ECDA assimilation does not guarantee a good fit, making this
comparison a meaningful initial step in the forecast evaluation.

2.4. Assessment of SST anomaly forecasts

Prediction skill of the LME average SST anomaly was assessed
using the anomaly correlation coefficient (ACC) between the fore-
cast ðF 0Þ and observed ðO0Þ anomalies as a function of initialization
month (m) and lead time (t):

ACCðt;mÞ ¼
PN

a¼1ðF
0
aðt;mÞ � O0aðt;mÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

a¼1F 0aðt;mÞ
2PN

a¼1O0aðt;mÞ
2

q ð1Þ

Monthly forecast and observed anomalies are not de-trended or
filtered. The sample for calculating the ACC at each lead and start
month is drawn from the ensemble mean trajectories of 28 fore-
casts initiated for a given start month between 1982 and 2009
(N = 28 in Eq. (1)). To correct for drift in the forecast system, fore-
cast anomalies are calculated relative the lead-dependent climatol-
ogy formed from the same 28 ensemble mean forecasts for each
initialization month. The ACC ranges from �1 to 1 and quantifies
the extent to which SST variability in the forecast and the observa-
tions coincide. A common reference of a minimum usable forecast
skill is an anomaly correlation P0.5 (Roads, 1986). A weakness of
the ACC is that it does not detect systematic differences in anomaly
variance between the forecast and the observations. We provide
estimates of the root mean squared deviance (RMSD) in the
Supporting material (Figs. S18–S34), while noting that rescaling
SST anomalies provides a means of adjusting for magnitude biases
when SST anomalies are of direct interest (e.g., see discussion in
Stockdale et al., 2011).

ACC values were calculated for both dynamical forecast systems
(i.e., CM2.5 FLOR and CFSv2) and a ‘‘persistence forecast’’ that pre-
sumes the prior month’s OISST.v2 anomaly persists across all leads
(von Storch and Zweirs, 1999). Skill relative to persistence is a key
measure of the added value of dynamical forecast systems (see
Sections 3.3 and 4).

ACC significance was assessed after correcting degrees of free-
dom for autocorrelation using the methodology described in
Bretherton et al. (1999):

Neff ¼
NPt¼N�1

t¼0 1� t
N

� �
rF

t rO
t

ð2Þ

where N = 28 is the number of samples in the forecast (F) and
observed (O) time series, and rF

t and rO
t are estimates of the
autocorrelation in each time series at lag t. Tests were carried out
to determine if (a) the dynamical forecast ACC is significantly
greater than 0; and (b) the dynamical forecast ACC is significantly
greater than the persistence forecast ACC. Both use a Fisher’s z
transformation (Fisher, 1915, 1924; von Storch and Zweirs, 1999),
where sample estimates of the correlation coefficient are trans-
formed with:

ZF;O ¼ 0:5 ln½ð1þ rF;OÞ=ð1� rF;OÞ� ð3Þ

where rF,O is the correlation between the forecast and observed time
series. The quantity ZF,O then follows a z distribution with Neff � 3
degrees of freedom. To test (a), a one-sided 90% confidence interval
was calculated for Z, transformed back to correlation space using
the Fisher’s z transformation, and compared against r = 0. To assess
(b), 1000 realizations were drawn from the respective z distribu-
tions of the persistence and dynamical forecasts. Enhancement of
skill was deemed 90% significant for those cases in which the
dynamical forecast correlation was greater than the persistence
forecast 90% of the time.

2.5. Understanding skill above persistence

Select forecasts exhibiting an ACC > 0.5 and significant skill
above persistence are singled out for more detailed analysis. The
evolution of SST anomalies between forecast initialization and
the forecast window is determined through a combination of hor-
izontal and vertical ocean transport and net atmosphere–ocean
heat flux variations (e.g., Deser et al., 2010). We diagnose the roles
of these processes using spatial correlation analysis to identify
prominent contributors to skill above persistence. Finer parsing
of system-specific heat budgets (e.g., Benthuysen et al., 2014;
Frankignoul, 1985) would require additional diagnostics and is
beyond the scope of this contribution.

The role of horizontal transport is examined through the corre-
lation between the observed LME mean SST anomaly during a fore-
cast window and spatially explicit SST anomalies within the
forecast initialization and/or earlier in the forecast. Forecast sur-
face currents are enlisted to elucidate transport pathways.

The role of vertical transport is assessed through the correlation
between the observed LME mean SST anomaly during a forecast
window and ocean temperature anomalies at depth during the
forecast initialization and/or earlier in the forecast. The maximum
mixed layer depth during the period between the initialization and
forecast window is used to identify depth strata that influence
forecast SST anomalies.

The role of the atmosphere–ocean heat fluxes in shaping fore-
cast anomalies is assessed through the correlation between the
LME mean SST anomaly during the forecast window and the fore-
cast net atmosphere–ocean heat flux anomalies during months
prior to the forecast window.



Table 4
Comparison of OISST.v2 anomalies against reanalyses used to initialize CM2.5-FLOR
and CFSv2 forecasts. Comparisons are based on initiations from 1982 through 2009
(i.e., for forecasts stretching from 1982 to 2010) and averages across all grid cells
within an LME (in contrast to the point-wise comparisons against WOD13 data in
Table 3). Biases are reported as the mean differences between the forecast reanalysis
and OISST.v2 such that positive values indicate a warm bias in the forecast
initialization. Note that CFSR is strongly relaxed to OISST.v2 and that there are
discrepancies between OISST.v2 and WOD13 data in the SEUS (Table 3).

EBS GoA CC IP–H GoM SEUS NEUS

GFDL-ECDA
r 0.89 0.95 0.94 0.89 0.81 0.58 0.70
Bias/4rOI 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rECDA/rOI 1.00 1.07 1.01 0.89 1.07 1.19 1.39

NCEP-CFSR
r 0.99 1.00 1.00 1.00 0.99 0.98 0.94
Bias 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rCFSR/rOI 1.02 1.01 0.99 1.02 0.98 1.03 1.01
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In all cases, the significance of correlations was tested with the
methodology described in Section 2.4. Only correlations whose
magnitude is significantly different than zero at the 90% confidence
level are shown.

3. Results

3.1. Evaluation of historical SST anomaly estimates

OISST.v2 anomalies were found to be consistent in magnitude
and direction with raw WOD13 anomalies at the LME-scale for
six of the seven LMEs in Fig. 1 (Table 3). Correlation in the six con-
sistent systems was highest at annual scales (>0.9), but remained
>0.75 for monthly anomalies. The exception was the Southeast
United States (SEUS), where OISST.v2 and WOD13 anomalies were
less correlated (r = 0.48–0.60). The SEUS LME is the smallest of
those considered (Table 1) and is immediately adjacent to the
Gulf Stream, creating a sharp hydrographic contrast that may con-
tribute to the WOD13 and OISST-v2 inconsistencies.

OISST.v2 is also biased warm relative to WOD13 measurements
in most systems (Table 1). The bias is generally �5–10% of the
scope of the anomalies (i.e., the 4 standard deviation width), but
is somewhat larger (�20%) for the Insular Pacific/Hawaii (IP/H)
LME. It could reflect differences in the representative depth of
satellite versus in-situ SST measurements (e.g., May et al., 1998).
We note, however, that bias does not affect the ACC metric central
to this study.

The forecast initial conditions for the GFDL and NCEP forecasts
generally agree with each other and the OISST.v2 anomalies
(Table 4). As noted in Section 2, this agreement is not surprising
for CFSv2 due to tight relaxation toward OISST.v2 at the ocean sur-
face. For GFDL-ECDA, it confirms that the forecast initialization still
contains anomalies consistent with OISST.v2 after reconciliation of
coarse global model dynamics and OISST.v2 in the relatively small,
dynamic coastal systems of interest herein. The only LMEs showing
signs of degraded agreement with OISST.v2 in ECDA are the NEUS
and SEUS systems; small LMEs influenced by western boundary
currents not well resolved in 1� ocean models (e.g., Delworth
et al., 2012).

In combination, Tables 3 and 4 suggest that accurate retrospec-
tive SST estimates at the LME-scale and accurate SST initialization
are not primary limiters of forecast skill assessment for 6 of the 7
LMEs in Fig. 1. We thus proceed with the forecast skill assessment
Table 3
Comparison of anomalies on annual, seasonal and monthly time scales from the High-
Resolution SST reanalysis OISST.v2 with World Ocean Database anomalies for each
LME. Comparisons are based on 1982–2010 to match the hindcast data. Bias is the
mean difference between WOD13 data points and the OISST.v2 climatology, with
negative values indicating warm bias in OISST.v2. Biases are normalized by the four
standard deviation width of the anomalies between WOD13 data and the OISST.v2
climatology (rw) to indicate the size of the bias relative to the spread of the
anomalies. The ratio of standard deviations of the OISST.v2 (rOI) and WOD13
anomalies assesses damping (<1) or amplification (>1) in OISST.v2 relative to WOD13.

EBS GoA CC IP–H GoM SEUS NEUS

Annual
r 0.91 0.94 0.96 0.90 0.93 0.52 0.93
Bias/4rw �0.12 �0.09 �0.07 �0.25 �0.07 �0.10 0.06
rOI/rw 0.94 1.09 0.96 1.23 0.96 1.08 0.82

Season
r 0.91 0.88 0.93 0.89 0.84 0.60 0.87
Bias/4rw �0.08 �0.10 �0.07 �0.21 �0.03 �0.08 0.04
rOI/rw 0.92 1.05 0.96 1.16 0.88 0.93 0.85

Month
r 0.75 0.85 0.92 0.86 0.82 0.48 0.83
Bias/4rw �0.06 �0.09 �0.07 �0.17 �0.02 �0.06 0.03
rOI/rw 0.88 1.03 0.96 1.12 0.89 0.82 0.90
and diagnosis, while noting that many other ecosystem relevant
variables may not meet these criteria (e.g., see sea surface salinity
discussion in Section 4).
3.2. SST anomaly forecast skill and underlying mechanisms across U.S.
LMEs

Forecast skill (ACC) for the dynamical forecast systems (GFDL
CM2.5-FLOR, NCEP CFSv2) and persistence forecasts are summa-
rized for the 7 U.S. LMEs in Figs. 2 and 3. Forecast skill varies widely
by LME, initialization month (x-axis of figure panels), and forecast
lead (y-axis of figure panels). There are many cases, however, of
high ACCs that significantly exceed persistence forecast skill.
Many of these occur with leads of 6 months or more. Global climate
forecast systems thus have notable coastal SST anomaly forecasting
skill for many systems, at least at the LME-scale, despite relatively
coarse oceanic and atmospheric resolution.

Differences in prediction skill between the two forecast systems
are generally secondary to cross-LME predictability contrasts. We
thus focus analysis on the latter, particularly understanding mech-
anisms generating skill above persistence.

East Bering Sea (EBS) forecasts (Fig. 2, top row) are character-
ized by elevated ACCs for April 1 to October 1 initializations pre-
dicting into the early winter (i.e., in the CM2.5 FLOR forecast,
note the right triangle of red/orange colors extending upward from
initialization month 4, April 1, out 9 months on the y-axis, and then
descending steadily until elevated ACCs for month 10, October 1,
initializations are apparent out to 3 month or less). The diagonal
forming the upper bound of this right triangle corresponds to a
December anomaly forecast. Hence, from April to October, one
can forecast SST anomalies out to December with some skill. The
paucity of white triangles for forecasts within this region of ele-
vated skill, however, indicate that dynamical model forecast
ACCs do not generally exceed the skill of the persistence forecast
(Fig. 2, top row, right panel) by a significant margin.

ACCs sharply decline and become statistically insignificant as
April to October initialized EBS forecasts are extended through
the winter to the early spring (note the white/orange limb with a
width of 3–5 months extending diagonally downward above the
right triangle of high skill discussed above). Surprisingly, forecast
skill in the EBS can be reestablished after winter (e.g., note the
August 1 initialized forecast for the following May–July in CM2.5
FLOR). This occurs in both dynamical forecast systems and, to a les-
ser degree, in the persistence forecast. It can be understood
through the inverse relationship between forecast EBS sea ice mass
anomalies during the seasonal sea ice peak (March) and SST
anomalies the following summer (Fig. 4). Sea-ice serves as
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Fig. 2. Anomaly correlation coefficients (ACCs) as a function of forecast initialization month (x-axis) and lead time (y-axis). Initialization month 1 corresponds to January 1
initialization in CM2.5 FLOR and initialization during the latter half of December in CFSv2 (see Section 2.2). The lower left box (x = 1, y = 0–1) thus corresponds to a January
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reservoir for carrying fall SST anomalies across the winter season
to the following spring in the EBS – with high sea ice mass carrying
cold SST signals and low sea ice mass carrying warm. This mirrors
mechanisms invoked to explain sea-ice predictability in the Arctic
whereby melt patterns during previous years leave SST imprints
that impact ice extent during the following ice growth season
(Blanchard-Wrigglesworth et al., 2011).
The sea-ice mechanism illustrated in Fig. 4 further suggests that
winter/early spring initialized prediction may generate ACCs above
persistence with accurate initialization of sea-ice mass. Such pre-
dictions, however, have little skill in CM2.5 FLOR. They are some-
what better CFSv2, but improved sea-ice initialization may still
offer a means of improving spring/summer SST anomaly forecast
skill in the EBS for both forecast systems (see Section 4).
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Fig. 3. Anomaly correlation coefficients (ACCs) as a function of forecast initialization month (x-axis) and lead time (y-axis). Notation is as described for Fig. 2.
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�0.64. That is, years with low ice mass in the EBS tend to have a warmer May/June/July and those with high ice mass a colder May/June/July.
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Gulf of Alaska (GoA) forecasts, particularly those from CM2.5
FLOR, exhibit a prominent diagonal ridge of ACCs > 0.5 and signif-
icantly above persistence for February–March (FM) predictions
(Fig. 2, row 2). FM GoA anomalies have a strong correlation with
basin-scale SST variations (Fig. 5A) that are consistent spatially
with anomalies resulting from ENSO and its teleconnections, which
peak in the boreal Fall and Winter (Alexander et al., 2002), and the
Pacific Decadal Oscillation (Mantua et al., 1997). Indeed, the corre-
lations of GoA FM SST anomalies with the PDO and Nino3.4 indexes
are 0.89 and 0.63, respectively. This tight linkage to basin-scale
variability contrasts with late Spring through Fall anomalies which
do not exhibit strong linkages with basin-scale climate variations



Fig. 5. A: Correlation between the March Gulf of Alaska LME SST anomaly and March SST anomalies over the equatorial and North Pacific (both the LME-average and
spatially-resolved anomalies are based on NOAA OISST.v2). Note the strong covariation with basin-scale patterns similar to those associated with ENSO and PDO. B: As in
panel (A), but for August when covariation with basin-scale patterns is much weaker. The Gulf of Alaska LME is outlined in black in both panels. Correlations are only shown if
they are significantly different than 0 with 95% confidence.
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(Fig. 5B, r = 0.38 with the PDO index and r = 0.35 with the Nino3.4
index). CM2.5 FLOR’s ability to capture the transition of the GoA
from these more ‘‘localized’’ SST anomalies during the late
Spring/Fall to SST anomalies with strong links to basin-scale
Fig. 6. A: August 1 initialized February–March prediction for the Gulf of Alaska LME S
reanalysis is 0.75, while the correlation with the persistence forecast is only 0.27. B: Co
March SST anomaly; vectors are mean surface currents from August through March subsa
ocean temperature at 70 m and observed February/March SST anomaly; contours indicat
March forecast window. D: Correlation between the surface atmosphere to ocean heat fl
forecast window and the observed February/March SST anomaly. In panels (B–D), only co
climate variations in late winter/early spring thus generates the
skill above persistence for FM forecasts in the Gulf of Alaska.

Fig. 6 illustrates the mechanisms underlying the transition from
localized SST anomalies to anomalies with strong basin-scale
ST anomaly in CM2.5 FLOR. The correlation between the model forecast and the
rrelation between the August-initialized SST anomaly and the observed February/
mpled at approximately every 2� Lon/Lat. C: Correlation between August-initialized
e maximum mixed layer depth between the August initialization and the February/
ux anomaly (positive into ocean) during and 1 month prior to the February/March
rrelations that are significant greater than 0 at the 90% confidence level are shown.
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linkages in CM2.5 FLOR for an August initialized FM forecast.
Improvement over the persistence forecast is clearly evident for
this forecast (Fig. 6A; r = 0.75 between the dynamical forecast
and OISST.v2; r = 0.27 between the persistence forecast and
OISST.v2). Correlation patterns suggest advection of offshore SST
anomalies from the August initialization into the GoA (Fig. 6B)
and winter heat flux anomalies (Fig. 6D) as primary drivers of
the FM SST anomaly, with emergence of subsurface anomalies
playing a lesser role (Fig. 6C). The role of anomalous winter heat
fluxes in driving FM SST anomalies in the Gulf of Alaska is consis-
tent with strong southerly winds carrying anomalously warm,
moist air over the Gulf of Alaska during positive phases of PDO
and ENSO (Alexander et al., 2002; Mantua et al., 1997).

Our results in the GoA are generally consistent with those of
Wen et al. (2012) in their earlier evaluation of CFSv2. In particular,
Wen et al. (2012) found that 6-month SST predictions for the Gulf
of Alaska had the highest mean skill from predictions initialized in
August versus other times of year. Moreover, the western Gulf of
Alaska was one of the regions where the model had significantly
higher skill than persistence in its forecasts with 6-month leads.
The prominence of the FM ACC ‘‘ridge’’ in CM2.5 FLOR extends this
prior result.

The California Current (CC) LME SST anomaly predictions in
CM2.5 FLOR and CFSv2 (Fig. 2, row 3) show a similar ridge of
enhanced predictive skill for winter and early spring forecasts as
the GoA. February, March, and April ACCs are generally higher than
the persistence forecast though, unlike the GoA, they rarely exceed
persistence with 90% confidence. Like the GoA, skill is linked to the
forecast systems ability to capture transitions between localized
SST anomalies from Spring through Fall and basin-scale variability
during the winter and early spring (not shown).

Insular Pacific–Hawaiian (IP–H) LME forecasts exhibit high ACC
values for both forecast systems across most start months and
leads (Fig. 2, row 4). In addition, predictions of winter and spring
conditions based on summer through early winter initializations
greatly exceed the skill of the persistence forecast. Fig. 7 elucidates
the mechanism underlying this skill through the example of a
September 1 initialized January–March SST anomaly forecast from
CM2.5 FLOR. During September, the IP–H LME lies between two
opposing centers of ENSO-linked SST variability in the North
Pacific (Fig. 7B). The forecast January–March anomaly, however,
shows a strong positive correlation with anomalies to the North
and a negative correlation with eastern equatorial anomalies. The
boundary between the initialized northern and equatorial anoma-
lies migrates southward through the late summer and into winter,
such that the IP–H LME is mostly overlain by the initially northern
anomaly by the January–March forecast window (Fig. 7C). The
accurate representation of this transition in the dynamical forecast
yields a correlation with OISST.v2 of 0.84, far higher than the per-
sistence correlation of 0.02 (Fig. 7A). It is notable, however, that the
large Latitudinal extent of the IP–H may lead to differences
between the LME-mean anomaly and that experienced at a given
Latitude. For instance, much of the Hawaiian chain in Fig. 7C
remains Southeast of the northern anomaly even in January–
March. This heterogeneity was reflected in lower coherence of
SST anomalies within the IP–H LME relative to the others (Table 1).

Both forecast systems are challenged in the smaller LMEs along
the U.S. East Coast (Fig. 3, rows 1 and 2). Skill in the Northeast U.S.
(NEUS) is low aside from prediction of spring/summer conditions
from winter/spring initializations in CM2.5 FLOR. This skill, how-
ever, can be primarily attributed to persistence. Performance is
better in the Southeast U.S. (SEUS), particularly for CFSv2. Skillful
prediction of fall SST anomalies for CFSv2 are linked to the north-
ward propagation of equatorial Atlantic SST anomalies in a manner
consistent with fall anomalies in the Gulf of Mexico (see below,
Fig. 8). The uncertain reliability of historical SST anomaly estimates
for this LME (Section 3.1, Table 3), however, makes interpretation
of this skill ambiguous. Prospects for improving predictions in
the NEUS and SEUS will be discussed in Section 4.

In the Gulf of Mexico (GoM) LME, both dynamical forecast sys-
tems exhibit skill above persistence for late summer/fall and spring
forecasts, but fail to predict winter conditions at most leads. For
late summer/fall forecasts, skill is linked to tropical Atlantic SST
anomalies. Fig. 8, for example, shows a December-initialized
August–September SST anomaly forecast for the GoM LME in
CM2.5 FLOR. The correlation between the dynamical forecast and
the observations is 0.58 and primarily reflects agreement on a
warming trend over the past 30 years (Fig. 8A). Forecast summer/-
fall anomalies show a clear, positive correlation with
winter-initialized low latitude Atlantic SST anomalies (Fig. 8B) that
strengthen and propagate into the Gulf of Mexico through the
spring (Fig. 8C) and summer (Fig. 8D). The monotonic increase in
predicted anomalies suggest a linkage to the Atlantic Meridional
Oscillation (AMO, Delworth and Mann, 2000), which exhibited
low values in the 1980s and early 1990s before transitioning to
and maintaining higher values from mid-1990s (e.g., Deser et al.,
2010). It is notable that the equatorial Atlantic linkages illustrated
in Fig. 8 also yield considerable prediction skill in the Caribbean
Sea and Northern Brazil for both models (see Supporting material)
and, in CFSv2, suggests a mechanism for fall predictability in the
SEUS LME.

Spring forecast skill in the Gulf of Mexico is linked to the trop-
ical Pacific variability (Fig. 9B), with cool/warm springs following
1 year after an El-Nino/La-Nina event (Fig. 9A, note cold anomalies
after strong El-Nino’s in 1982, 1987, 1992, and 1997; warm
anomalies following strong La Ninas in 1985, 1989, 1999/2000,
and 2008). The pattern is explained by ENSO teleconnections driv-
ing winter heat flux anomalies within the Gulf of Mexico (Fig. 9C,
Alexander et al., 2002). Predictive skill through this mechanism is
moderate (r = 0.57 between the forecast and OISST.v2 in Fig. 9A),
suggesting the presence of significant other sources of variability
not captured by the prediction.

3.3. Exploring SST anomaly prediction across global LMEs

Detailed examination of seasonal prediction in U.S. LME’s pro-
vided a spectrum of prediction success and highlighted several
mechanisms for generating skill above persistence. Predictability
assessments for 66 LMEs globally for both the CM2.5 FLOR and
CFSv2 forecasts are provided in the Supporting material and
expand the scope of this limited U.S. sample. We highlight several
additional cases of notable skill above persistence from this wider
set of LMEs as regions with high potential for marine resource
applications, while noting that additional scrutiny relative to local
datasets is needed to confirm skill (e.g., Section 3.1) and mechanis-
tic investigation to gain more detailed understanding of the pro-
cesses responsible for skill above persistence (e.g., Section 3.2)
would improve confidence in applications.

Chief among the mechanisms leading to skill above persistence
in U.S. LMEs analyzed in Section 3.2 were (a) alternation between
‘‘localized’’ SST variations not predicted by global forecast systems
and the emergence of predictable signals associated with
basin-scale climate variability (e.g., Fig. 5, GoA, CC, GoM examples),
and (b) the predictable evolution of basin-scale climate modes
within an LME (e.g., Fig. 7, IP–H). It is thus not surprising that equa-
torial LMEs directly impacted by ENSO, such as those in the west-
ern tropical Pacific (Fig. 10), are amongst those exhibiting forecasts
with the highest skill above persistence. Other equatorial LMEs
(see Supporting material) with notable predictability above persis-
tence include the Indian Ocean (Agulhas and Somali Currents, the
Arabian Sea, the Bay of Bengal), the Pacific Central American LME
(at the eastern end of the ENSO signal), and West African LMEs
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Fig. 7. A: September 1 initialized January–March SST anomaly forecast for the Insular Pacific–Hawaiian (IP–H) LME in CM2.5 FLOR. The correlation between the dynamical
forecast and January–March OISST.v2 in 0.84; the correlation between the persistence forecast and OISST.v2 is 0.02. B: Correlation between the September 1 initialized SST
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January–March IP–H LME SST anomaly. Note the southward migration of the central north Pacific anomaly over the IP–H region. In panels (B and C), only correlations that
significantly exceed 0 with 90% confidence are shown.

Fig. 8. A: December initialized August–September SST anomaly forecast for the Gulf of Mexico LME in CM2.5 FLOR. The correlation between the dynamical forecast and OISST.v2
in 0.57; the correlation between the persistence forecast and OISST.v2 is 0.21. Panels B–D: the progression of the spatially resolved covariance between SST over the North
Atlantic Basin and the GoM August to September SST anomaly over the course of the forecast. B: Correlation between the December-initialized SST anomaly and the OISST.v2
August–September Gulf of Mexico LME SST anomaly. C: Correlation between the spatially resolved May SST anomaly forecast and the OISST.v2 August–September Gulf of
Mexico LME SST anomaly. D: Correlation between the spatially resolved August SST anomaly forecast and the OISST.v2 August–September Gulf of Mexico LME SST anomaly.
Vectors in all panels are mean December–August surface currents sub-sampled at �2� Lat/Lon and only correlations that significantly exceed 0 with 90% confidence are shown.
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Fig. 9. A: July initialized April–May SST anomaly forecast for the Gulf of Mexico LME in GFDL-FLOR. The correlation of the dynamical forecast and OISST.v2 is 0.58; the
correlation between the persistence forecast and OISST.v2 is 0.02. B: Correlation between the initialized SST anomaly and the OISST.v2 April–May Gulf of Mexico LME SST
anomaly. C: Correlation between the July initialized November through December heat flux anomaly and the OISST.v2 April–May Gulf of Mexico SST anomaly. In all cases,
only correlations that significantly exceed 0 with 90% confidence are shown.
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Fig. 10. CM2.5 FLOR predictions for western tropical Pacific LMEs. Grids are as in Fig. 2.
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Fig. 11. CM2.5 FLOR predictions for Northeast Atlantic LMEs. Grids are as in Fig. 2.
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impacted by the Atlantic Nino (Guinea Current extending south-
ward into the Benguela).

In the extratropics, the Northeast Atlantic LMEs exhibit high
ACCs across a range of initialization months and leads (Fig. 11).
Skill, however, rarely exceeds that of the persistence at the 90%
level. This reflects the predominance of low-frequency
basin-scale climate variability in the Northeast Atlantic, which
minimizes both seasonal local/basin-scale contrasts and the
degrees of freedom within the retrospective forecasts. It is impor-
tant to note, however, that while skill above persistence is a critical
metric for assessing dynamical forecast systems, it is not necessar-
ily a prerequisite for the utility of predictions for marine resource
applications. Skill above persistence may also arise within
Northeast Atlantic LMEs with longer times series, by considering
more coastal sub-regions, or with improved resolution of local
scale processes that create distinctions from basin-scale dynamics
(see Section 4).

The seasonal cycle of mixed layer depth in the extratropical
oceans has the potential to influence the evolution of SST anoma-
lies and thus their predictability. Temperature anomalies that form
at the surface due to anomalous surface heat fluxes in winter,
spread throughout the deep winter mixed layer, are sequestered
beneath the mixed layer when it shoals in spring, remain intact
in summer and are then re-entrained into the surface layer in the
subsequent fall and winter. The SST anomalies in the shallow
mixed layer during the intervening summer are strongly damped
by surface heat fluxes. This process leads to the winter-to-winter
reemergence of SST anomalies in portions of the Atlantic and
Pacific and Oceans (Alexander et al., 1999; Hanawa and
Sugimoto, 2004; Namais and Born, 1970, 1974). Forecast skill due
to reemergence in both the model and SST persistence forecasts
will be indicated by higher correlations from winter/spring to the
following fall/winter (lags of 6–12 months) with a drop in correla-
tions during the summer, as appears to be the case for the Sea of
Japan/East Sea LME (Fig. 12). Model forecasts initialized in summer
can provide skill above SST persistence as they include tempera-
ture anomalies located below the mixed layer in the summer sea-
sonal thermocline (approximately 20–100 m) that return to the
surface in the fall and winter. Extensions of the reemergence para-
digm: (i) that anomalies can propagate from where they were ini-
tiated to where they return to the surface (‘‘remote reemergence’’ –
de Coetlogon and Frankignoul, 2003; Sugimoto and Hanawa, 2007)
and (ii) the temperature anomalies may be due to ocean heat
advection (rather than mixing) that extends to the surface in win-
ter but is covered over by a shallow mixed layer in summer, may
also produce skill above persistence in extratropical regions.

Lastly, the East Bering Sea (EBS) analysis in Section 3.2
suggested that accurate initiation of sea-ice mass anomalies may
generate skill above persistence for winter initialized SST anomaly
predictions of the following Spring and Summer. Hints of this



Fig. 12. Left: Winter re-emergence of SST anomalies in the Sea of Japan. Left panel: Forecast ACC as a function of initialization (x-axis) and forecast lead (y-axis) for CM2.5
FLOR in the Sea of Japan. Middle: Correlation between the September initialized 75 m temperature anomaly and forecast anomalies in December-February. Only correlations
that are greater than 0 with 90% confidence are shown. Right: As in left panel, but for persistence. Grid is as in Fig. 2.
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mechanism are apparent in the Arctic, particularly the Beaufort,
Chukchi, and East Siberian Seas (Fig. 13). The potential of this
mechanism to generate skillful SST anomaly predictions suggests
closer scrutiny and improvement of sea ice mass initializations.
4. Discussion

The SST anomaly prediction skill, as measured by the ACC, var-
ied greatly by LME, initialization month, and lead. The frequency of
skillful predictions arising through a diversity of mechanisms,
however, suggests considerable potential utility of global dynami-
cal climate forecast systems for LME-scale SST prediction and sub-
sequent application to marine resources. We now further discuss
the strengths, limitations, and priority developments of global sea-
sonal forecast systems for such applications, before offering some
concluding remarks on marine resource management applications.

Accurate, continuous estimates of past variations in ocean state
at the scales of interest are a critical prerequisite for establishing
forecast skill. Detailed assessment of OISST.v2 anomaly estimates
(Reynolds et al., 2007) against point-wise in-situ observations
(Boyer et al., 2013) supported the general robustness of OISST.v2
for LME-scale SST variability. Disagreement in the SEUS LME, how-
ever, suggests room for further improvement and underlines the
need for careful scrutiny of ocean and climate reanalyses at the
scales of interest before accepting them as ‘‘observations’’.
Continued maintenance of and advances in ocean observing sys-
tems (e.g., GCOS, 2010; IOOS, 2013) are essential for improving
observational constraints for both the initiation and assessment
of predictions. While the success of OISST.v2 at the LME-scale is
encouraging, SST’s are amongst the most extensively observed
ocean variables via both in-situ and remote means. Other
ecologically-relevant ocean variables, such as sea surface salinity
(SSS) or bottom temperature, have far fewer constraints. The pre-
diction ‘‘bottleneck’’ for many ecologically relevant variables thus
begins with accurate retrospective estimates.

We assessed the consistency SSS anomalies for several global
ocean data assimilation products at the LME-scale and found far
less agreement (Table 5). The CFSR system, whose ocean assimila-
tion is based on the Global Ocean Data Assimilation System
(GODAS, Xue et al., 2011) includes strong damping to
climatological World Ocean Atlas salinity fields at the surface
and assimilation to climatological Temperature–Salinity relation-
ships at depth. It thus does not capture seasonal salinity anomalies.
GFDL’s ECDA system (Zhang et al., 2007) and the Simple Ocean
Data Assimilation (SODA, Carton and Giese, 2008) were able to
match relatively small SSS deviations in oceanic systems fairly well
(Table 5, IP–H, CC LMEs) but coastal regions subject to stronger
riverine SSS variations generally exhibited lower correlations and
significant biases. SSS anomalies are also more heterogenous
within LMEs. Detailed inspection of correlations spatially (not
shown) suggests poor skill in near-shore regions that often
improves offshore. In the case of SSS, the Aquarius satellite
(Lagerloef et al., 2008) may provide improved anomaly constraints
if time-series are sustained and bias issues for coastal regions can
be overcome.

We also reiterate that the impacts of SST (and SSS) on species of
interest are often indirect (Section 1). That is, SST and SSS often do
not drive ecosystem change through direct physiological effects,
but serve as a proxy for other system characteristics (e.g., mixed
layer depth, stratification, horizontal transports, etc.) actually
driving ecosystem changes. Such proxy relationships can break
down (Myers, 1998), providing impetus for direct prediction of
driving properties (e.g., Hobday and Hartog, 2014). The
sub-surface information required to assess predictions of subsur-
face ecosystem properties are scanty in most coastal zones, but
there are selected locations where extended time series of vertical
ocean profiles are available (McClatchie et al., 2014). In the north-
east Pacific, for example, time series are available for the Seward
line in the GOA (e.g., Weingartner et al., 2005), the Newport line
off the Oregon coast (e.g., Peterson et al., 2002), and from the
CalCOFI program for southern California (Pena and Bograd, 2007).
For bottom temperatures, fisheries surveys provide systematic,
controlled observations for select seasons in many ecosystems
globally (e.g., Pinsky et al., 2013). Future efforts to assess predic-
tions against these data sources are needed.

SST anomaly prediction skill varied widely by LME. The
Northeast and Southeast U.S. (NEUS, SEUS) LMEs posed perhaps
the largest challenge for global dynamical forecast systems of the
seven considered in detail. These LMEs are amongst the smallest
globally. They are also adjacent to an energetic western boundary
current which is too laminar at the coarse ocean resolution used by
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Fig. 13. SST anomaly predictions in the Arctic in CM2.5 FLOR. Grids are as in Fig. 2.

Table 5
A comparison of LME-scale seasonal salinity anomalies from the GFDL ECDA
(reference) and SODA 2.2.4 reanalyses (reference) against WOD13 SSS observations
via the methodology described in Section 2.2, but using the respective ODAs as
reference climatologies rather than OISST.v2. The comparison considers the years
1982 through 2010, a period common to the reanalyses and covering most of the
hindcast period. SSS observations <25 PSU, generally a small fraction of points, were
omitted from the comparison to minimize estuarine influence. This did not
significantly effect the overall poor agreement between WOD13-based SSS anomalies
and the reanalyses. SSS anomalies in the CFSR and GODAS reanalyses (not shown)
were both strongly damped to climatologies and are not shown.

EBS GoA CC IP–H GoM SEUS NEUS

GFDL-WOD
r 0.63 0.01 0.68 0.76 0.12 0.47 0.35
Bias/4rw 0.14 0.29 0.02 0.07 0.27 0.16 0.29
rECDA/rw 0.55 0.33 0.82 0.87 0.40 0.48 0.91

SODA-WOD
r 0.45 0.04 0.80 0.78 0.18 0.26 0.66
Bias/4rw 0.15 �0.01 0.07 0.06 0.28 0.28 0.14
rSODA/rw 0.63 0.33 0.99 0.89 0.18 0.25 0.73
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global forecast systems, contributing to biases in the separation
point between the Gulf Stream and the eastern U.S. continental
shelf and in the subsequent Gulf Stream path (e.g., Delworth
et al., 2012). The Gulf Stream position has been shown to influence
water masses in both the NEUS and SEUS LMEs by controlling
water flow through deep channels along the shelf-break not
resolved by 50–100 km resolution (Drinkwater et al., 2003;
Pershing et al., 2001) with subsequent effects on fish populations
(Nye et al., 2011). Furthermore, poorly-resolved southward flowing
coastal currents provide key transport pathways from maritime
Canada and the Arctic (Chapman and Beardsley, 1989; Fratantoni
and Pickart, 2007; Loder et al., 1998). Finer ocean resolution is thus
likely to be a key improvement for SST prediction in the NEUS and
SEUS LMEs. With improved resolution of the processes connecting
the ocean basin to the shelf, the diversity of large-scale climate dri-
vers of shelf variability in the NEUS and SEUS raises the potential
for considerable prediction skill. Empirical forecasts linking
basin-scale properties to lagged shelf-scale responses in these
regions (e.g., Greene and Pershing, 2003) may provide a means
for progress as dynamical systems are refined. Such statistical
approaches rely on the stationarity, but they are often competitive
with dynamical forecasts in seasonal climate and ENSO prediction
(e.g., Barnston et al., 2012). As with dynamical forecasts, however,
most past statistical prediction studies focus on basin-scale modes
of variation (e.g., Alexander et al., 2008; Hawkins et al., 2011;
Newman, 2007).

While improved ocean resolution may be important for the
NEUS and SEUS, the atmosphere plays the central role in resolving
basin-scale patterns of ocean variability (e.g., Alexander et al.,
2002; Deser et al., 2010) underlying many instances of skill above
persistence. Likewise, deficiencies in atmospheric models con-
tribute to ocean biases commonly attributed to poorly-resolved



C.A. Stock et al. / Progress in Oceanography 137 (2015) 219–236 233
ocean dynamics. Misplaced westerlies and subsequent biases in
wind stress curl, for example, contribute to errors in western
boundary current positions (e.g., Kwon et al., 2010). Insufficient
wind stress and over-estimation of insolation due to cloud biases
contribute to warm biases in eastern boundary current upwelling
regions (Large and Danabasoglu, 2006). Continued improvement
in atmospheric resolution and dynamics is thus also essential to
SST forecast improvement. A tangible illustration of this is pro-
vided by improved SST predictions in western tropical Pacific
LMEs in CM2.5 FLOR (Fig. 10) relative to those in GFDL’s CM2.1 pre-
diction system (Fig. 14). CM2.1 features the same ocean resolution
and ocean initialization as CM2.5 FLOR but has much coarser atmo-
spheric resolution (�200 km compared with �50 km in CM2.5
FLOR). The improvement for western tropical Pacific SST anomaly
prediction in CM2.5 FLOR is indicative of improved equatorial
Pacific climate dynamics in CM2.5 FLOR that accompany the
enhanced atmospheric resolution in this model (Jia et al., 2015).

Results from the East Bering and Chukchi Sea LMEs highlight
the potential value of improved sea-ice initialization to SST anom-
aly predictions for the following spring and summer. It is notable,
however, that spring/summer predictions were often better for
forecasts initialized in fall and spanning winter months than for
those initialized in winter (i.e., Fig. 2, row 1; Fig. 13). This suggests
that the forecast system may be better at dynamically simulating
the emergence of EBS winter ice mass anomalies based on fall
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Fig. 14. GDL CM2.1 predictions for the western tropical
initializations than initializing them directly. Improved initializa-
tion of sea-ice thickness and extent, a priority for Arctic ice predic-
tion (Guemas et al., 2014; Msadek et al., 2014; Wang et al., 2013)
may thus also benefit SST anomaly prediction.

A final potential means of enhancing forecast skill is the use of
multi-model ensembles. The mean of a multi-model ensemble has
been shown to perform better than individual models for some
quantities over diverse spatial and temporal scales (e.g., Kirtman
et al., 2014; Reichler and Kim, 2008). Such ensembles can include
statistical and dynamical approaches (Barnston et al., 2012). A full
exploration of the value of ensemble approaches for SST anomaly
prediction across the range of systems explored herein is beyond
the scope of this contribution and is left to future work in system
specific contexts.

5. Prospects for marine resource applications

We end with some remarks on the potential value of coastal SST
anomaly forecasts for marine resource applications. Significant,
mechanistically-motivated relationships between ocean tempera-
ture and marine resource responses are common (Section 1) and
seasonal SST forecasts have already proven useful for a number
of marine resource applications (Hobday et al., 2011; Spillman
et al., 2013; Spillman and Hobday, 2014). Skillful SST anomaly pre-
dictions at marine-resource relevant scales have the potential to
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broadly support more effective and proactive dynamic manage-
ment strategies for marine resources (Hobday et al., 2014; Pinsky
and Mantua, 2014) by enabling anticipatory rather than reactive
marine resource management. While skill above persistence is
desirable for such applications, it is not required. Persistence skill
alone still improves upon the common implicit assumption that
the future environment is equally likely to be any one from the full
range of past states. The numerous cases herein of high SST anom-
aly prediction skill that does not exceed persistence should thus
not be discounted for potential marine resource applications.

Successful application of global climate forecasts within marine
resource management, however, requires more than just skillful
environmental forecasts. Current fisheries harvest control rules,
for example, rely on short-term stock biomass projections based
on past and present estimates of factors, such as recruitment devi-
ations, catchability, and body growth that are allowed to fluctuate
randomly according to past distributional information (Methot,
2009; Walters, 1989). Potentially prominent environmental effects
(e.g., Maunder and Watters, 2001; Mueter et al., 2009; Szuwalski
et al., 2013; Vert-pre et al., 2013) are often encompassed within
unexplained variability (Quinn and Deriso, 1999; Walters and
Martell, 2004), contributing to sub-optimal management (Keyl
and Wolff, 2008). Understanding the relationships between pre-
dictable environmental drivers and marine resource responses
(Myers, 1998) and integration of these relationships into manage-
ment frameworks are essential pre-requisites to forecast applica-
tions. This holds for forecast applications across the marine
resource management spectrum (e.g., distributional prediction
for spatial zoning, by-catch avoidance, sampling-observer designs).
Regardless of the context, careful scrutiny of the risks and benefits
of such integrated frameworks via management strategy evalua-
tion (A’mar et al., 2009; Haltuch et al., 2009; Punt et al., 2014;
Szuwalski and Punt, 2013) are also desirable prior to operational
use.

While successful application of monthly to inter-annual climate
forecasts to marine resource management is a multifaceted chal-
lenge, results herein suggest that the time is ripe for concerted
investigation of case studies – at least those where LME-scale
SST anomalies can serve as a robust driver of marine resource
responses. The methodology also provides an approach for assess-
ing predictions of other marine resource relevant drivers across
spatial and temporal scales. Expanding efforts in these areas
should help realize the value of future information provided by
existing monthly to inter-annual forecast systems for management
and identify priorities for further development.
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