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The commercial Dungeness crab (Metacarcinus magister) fishery in Oregon and Washington (USA) is one of the most valuable fisheries in the
region, but it experiences high interannual variability. These fluctuations have been attributed to environmental drivers on seasonal and annual
timescales. In this study, researchers and state and tribal fisheries managers develop a statistical model for Dungeness crab catch per unit effort
(CPUE) to help inform dynamic management decisions in Oregon and Washington. Fishing observations were matched to seasonally forecast and
lagged ocean conditions from J-SCOPE, a regional forecast system (http://www.nanoos.org/products/j-scope/). Inclusion of dynamic and lagged
ocean conditions improved model skill compared to simpler models, and the best model captured intraseasonal trends and interannual variability
in catch rates, and spatial catch patterns. We also found that model skill relied on fishing behaviour, which varies interannually, highlighting the
need for advanced fishing behaviour modelling to reduce uncertainty. The relationships between catch rates and ocean conditions may help
elucidate environmental influences of catch variability. Forecast products were co-designed with managers to meet their needs for key decision
points. Our results illustrate a seasonal forecasting approach for management of other highly productive, but also dynamic, invertebrates that
increasingly contribute to global fisheries yield.
Keywords: decision support, ecological forecasting, ecosystem-based fisheries management, Metacarcinus magister, oceanography, regional ocean modeling
system.

Introduction

In recent years, seasonal ocean forecasts have begun to inform
decision making and proactive management of marine re-
sources, including species-specific applications for tuna, hake,
and lobster (Hobday et al., 2011; Eveson et al., 2015; Mills
et al., 2017; Malick et al., 2020). On the US West Coast, the
Dungeness crab (Metacarcinus magister) fishery is the most
valuable, with landed values ranging from 77 to 216 mil-
lion US dollars per year for the 2007/08 to 2019/20 crab
seasons [Pacific Fisheries Information Network (PacFIN),
pacfin.psmfc.org]. As described below, the ecology of the Dun-
geness crab and its management context lend themselves to
seasonal forecasting for dynamic management. Conscious of
the central importance of this fishery to West Coast fishing
communities (Fuller et al., 2017), ethical considerations when
providing forecasts (Hobday et al., 2019), and the need to co-
produce forecasts with fishery managers and users, we present

steps towards generating catch rate forecasts for state and
tribal decision making.

Seasonal dynamic management for a particular fishery is of
potential value when certain conditions are present (Hobday
et al., 2016; Tommasi et al., 2017). First, short-term variabil-
ity must dominate long-term trends. In the case of the crab
fishery, landings vary substantially among years (Figure 1).
Over the past 12 years, crab catch has ranged from 3.7 M–
10.5 M kg per season for Oregon and from 3.4–7.6 M
kg for the Washington state fishery (Oregon Department of
Fish and Wildlife 2022 (ODFW); Washington Department of
Fish and Wildlife 2022 (WDFW)), with swings in ex-vessel
(“dockside”) value of $26–74 M for Oregon and $26–64 M
for Washington (PacFIN 2022). The degree to which ocean
conditions contribute to this interannual variability of the
Dungeness crab fishery is unknown, but earlier work sug-
gests that environmentally-driven changes in larval settlement
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Figure 1. Dungeness crab landings per crab season for Oregon and Washington state fisheries. Fishing typically begins late in one calendar year and
continues into the following year, so for example, the 2007–2008 fishery is labeled 2007/08.

could drive variability in the adult fishery (e.g. Armstrong
et al., 2010; Rasmuson, 2013; Shanks, 2013). Additionally,
larval stages (e.g. Reed, 1969; Brown and Terwilliger, 1999;
Miller et al., 2016; Bednaršek et al., 2020) and adult crabs (e.g.
De Wachter and Wilkens, 1996; Bernatis et al., 2007; McGaw,
2008) have been shown to be sensitive to ocean conditions.

Second, seasonal dynamic management requires that skill-
ful forecasts be available with enough lead time for managers
and fishermen to make and implement informed decisions
(Marshall et al., 2011; Hobday et al., 2016). For Washing-
ton and Oregon, ocean forecasts are available through the
Joint Institute for the Study of the Atmosphere and Ocean
(JISAO) Seasonal Coastal Ocean Prediction of the Ecosys-
tem (J-SCOPE; Siedlecki et al., 2016; http://www.nanoos.org
/products/j-scope/). J-SCOPE is a high-resolution (grid spac-
ing ∼1.5 km, 40 vertical levels), Regional Ocean Modeling
System (ROMS) model that uses initial and boundary condi-
tions from NOAA’s Climate Forecast System (CFS) global cou-
pled climate model. J-SCOPE produces oceanographic pre-
dictions (i.e. forecasts) initialized in January and April that
span 9 months, as well as 12 month historical simulations
(i.e. hindcasts). Biogeochemical variables from J-SCOPE, in-
cluding oxygen, carbon variables [e.g. saturation state (�)
and pH], and physical ocean conditions (e.g. temperature and
salinity) have been extensively validated (e.g. Siedlecki et al.,
2016; Norton et al., 2020), and these ocean conditions have
been used to develop statistical models to predict spatiotem-
poral variations in suitable habitat for sardine (Sardinops
sagax; Kaplan et al., 2016), Pacific hake (Merluccius produc-
tus; Malick et al., 2020), and larval Dungeness crab (Norton
et al., 2020).

Finally, seasonal dynamic management requires that deci-
sion makers have proactive options available (Sarachik, 2000)
that will allow the fishery to minimize losses in “bad” years
and maximize opportunity in “good” years (Marshall et al.,
2011; Hobday et al., 2016). These options may include the
ability to change catch rules or modify season opening and/or
closing dates (Melnychuk et al., 2014). Dungeness crab is a
culturally important species, and under the Stevens Treaties,
the tribes in Washington are guaranteed the right to har-
vest 50% of the shellfish in their traditional fishing grounds
(United States vs. State of Washington, 1995). Thus, Dun-
geness crab are co-managed between the states and tribes on
the outer coast of Washington within the “3S” framework (i.e.
“season,” “size,” and “sex”), where the season opening dates
as well as the opening location (i.e. Washington state vs. tribal
areas) is adjustable by the managers; a minimum size is also in
place, and catch is restricted to males only (Rasmuson, 2013).
By the Stevents Treaties, the timing of opening dates in co-
managed areas must strive towards equal sharing of the crab
catch among the state and tribal fishermen (Figure 2). Due
to disparate fleet sizes, the tribal fishery opens first in the co-
managed areas, typically in November or December, to allow
tribal fishermen the opportunity to harvest half of the legal
crab (Supplementary Table 1). Then the state fishery is usu-
ally opened in December or January. Due to the nature of this
derby-style fishery, which is characterized by high catch rates
initially that taper over time (Dewees et al., 2004), if managers
open the state fishery too early or too late, equal sharing will
not be attained. The decision of when to open the state fish-
ery is currently based on the initial incoming crab tonnage for
the tribal fishery, but this information is not always sufficient
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Predicting crab catch rates in the northern California Current 825

Figure 2. Schematic of the Oregon and Washington annual management of the Dungeness crab fishery and corresponding timeline of J-SCOPE model
products, which can support decision-making.

to estimate the total catch for the season (J.S. and D.A., pers.
obs.), and state opening dates are often debated, suggesting
the need for improved forecasting tools.

In our study, a team of oceanographers, fish biologists, and
state and tribal fisheries managers developed forecast prod-
ucts to support decision-making for the Dungeness crab fish-
eries in Oregon and Washington. We used seasonal ocean fore-
casts from J-SCOPE to develop statistical catch rate models
for Dungeness crab. We also investigated the relative impor-
tance of ocean conditions, including the effect of static, dy-
namic, and historical (i.e. lagged) conditions, on adult crab
catch rates. We then tested the model’s skill, which is criti-
cally important before operationalizing forecasts for dynamic
management applications.

Ecological context

Like many marine invertebrates, Dungeness crabs exhibit a
biphasic life history, living both in the water column and
on the seafloor over the course of their development. In the
fall, bottom-dwelling adult females release fertilized eggs that
hatch into planktonic larvae called zoeae. Zoeae grow and
molt through five stages before molting into their final pelagic
stage, known as the megalopae stage (Poole, 1966; Reed,
1969; Reilly, 1983). Megalopae are powerful swimmers com-
pared to zoeae (e.g. Fernandez et al., 1994), but their move-
ment is still affected by oceanographic currents (Hobbs et al.,
1992; Morgan and Fisher, 2010). After developing in the wa-
ter column for about 4–6 months total, megalopae metamor-
phose into juvenile crabs and settle back to the benthic envi-
ronment (Poole, 1966; Reilly, 1983). Crabs continue to grow
rapidly, reaching sexual maturity (100 mm carapace width) at
approximately two or three years of age and legal size (146-
159 mm carapace width) at age four or five (Tasto, 1983; Bots-
ford, 1984).

Crab abundance, often estimated by catch rate (Methot
and Botsford, 1982; Richerson et al., 2020), is influenced by
population-level drivers as well as local ocean conditions that
affect movement and response of adult crabs at the time of
capture. At the population level, Shanks (2013) reported a

significant, parabolic relationship between the abundance of
Dungeness crab megalopae in coastal habitats and recruitment
into the adult fishery 4–years later. In combination with stud-
ies that have demonstrated sensitivity of crab larvae to vari-
able ocean conditions (e.g. Reed, 1969; Sulkin et al., 1996;
Brown and Terwilliger, 1999; Miller et al., 2016; Bednarsek et
al., 2020), these exposures by larvae may drive future abun-
dance of adults. Adult crabs have also been shown to prefer
certain environmental conditions. For example, there is strong
in situ evidence that adult crabs are unable to withstand expo-
sure to severe hypoxic events (Grantham et al., 2004; Bernatis
et al., 2007; Froehlich et al., 2014), and in Puget Sound, hy-
poxia can compress habitat for adult populations (Bernatis et
al., 2007; Froehlich et al., 2014). While these dynamic ocean
conditions have the potential to impact the distribution or
abundance of adult crabs, their influence on population size
or catch rates has yet to be shown.

Methods

Hypotheses and selection of predictor variables

Following the approaches of Tolimieri et al. (2018) and Hal-
tuch et al. (2020), we considered distinct crab life stages and
their habitat use to identify ecological and oceanographic
drivers demonstrated by other studies to affect Dungeness
crab (Supplementary Table 2). These drivers were categorized
as either static variables, or variables related to dynamic or
lagged oceanography. We also included “fishing behaviour”
variables that may affect catch rates, specifically fishing loca-
tion, date, and soak time for pots.

Crab logbook data and fishing behaviour variables

Oregon and Washington state logbook data spanned crab sea-
sons 2007/08–2017/18 and 2009/10–2018/19, respectively,
and state fishery opening dates ranged from December 1–
February 7 during our study period (Supplementary Table 1).
Prior to data screening (see Supplementary Materials), our
model training set, which included crab seasons 2007/08–
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2015/16, consisted of 137,845 strings (i.e. a series of crab pots
attached along one line) from Oregon logbooks and 139,594
strings from Washington logbooks. We reserved data from
crab seasons 2016/17–2018/19 as a model testing set that con-
sisted of 17,706 and 66,849 strings from Oregon and Wash-
ington logbooks, respectively. As in Malick et al. (2020), this
test set is used to evaluate the out-of-sample forecast skill, as
measured against data not originally included in the fitting
procedure.

We modeled catch rates as kilograms per pot. This was cal-
culated from logbook records of crab catches per string, in
either weight (pounds) or counts, and number of pots per
string (see Supplementary Materials for conversion details).
Logbook data for both states also provided fishing location,
date, and soak time. The fishing location was reported as the
beginning latitude and longitude where strings of pots were
deployed. Since the fishery opening dates vary by year and
area (Supplementary Table 1), we calculated a relative “day
in season” on which fishing occurred. We also estimated a
year-effect term, which was treated as a smoothed continu-
ous variable, to account for unexplained interannual variabil-
ity. Finally, soak time is a measure of the duration (days) that
each string of pots was fished. We estimated the relationship
between soak time and catch rates per pot, expecting a positive
relationship, but allowing for the potential of trap saturation
or bait degradation over time.

Static variables

We use the term “static” to refer to variables that were gleaned
from the fishery logbooks (i.e. latitude, longitude, soak time,
day in season, and year), as well as two additional variables
(bottom depth, sediment grain size) that remain relatively con-
stant over time. These variables are expected to help explain
spatial variability in catch rates (H1-6 in Supplementary Table
2).

Dynamic and lagged ocean conditions from
J-SCOPE

Due to the timing of decisions made in the Dungeness crab
fishery (Figure 2), we generated a suite of 9 month fore-
casts of physical, biogeochemical, and biological dynamics
in J-SCOPE that would allow enough lead time to inform
decision-making while spanning most of the crab season. The
J-SCOPE forecasts were generated following the methodology
in Siedlecki et al. (2016) but were initialized using September
conditions from CFSv2. The season typically opens sometime
between December and February, and although fishing can
continue into summer months, ∼80–90% of logged catches
occur by the end of May. Because J-SCOPE forecasts on a
seasonal timescale, we used monthly-averaged ocean condi-
tions in the catch rate model. We developed hypotheses (H7-
12 in Supplementary Table 2) to explain the inclusion of
seven dynamic predictor variables (i.e. sea surface height, 2-
m integrated chlorophyll a, bottom salinity, bottom tempera-
ture, bottom oxygen, bottom aragonite saturation state, bot-
tom pH) that may affect spatial and temporal catch rates
of bottom-dwelling adult crabs. pH and aragonite saturation
state were calculated based on an empirical relationship (Nor-
ton et al., 2020).

To investigate the influence of environmental conditions on
early life stages (H13-16 in Supplementary Table 2), ocean
conditions were considered at lags accounting for the time

between early life stages and harvested adults (i.e. 3 and 4
yr lagged bottom temperature, bottom oxygen, and 2-m in-
tegrated chlorophyll a, and 4 yr lagged PDO). Annual aver-
age conditions were generated from J-SCOPE historical ocean
simulations (hindcasts). To simplify the analysis, we applied
the most basic assumption that earlier life stages occupy the
same location as where their adult counterparts were caught.
This assumption was based on the concept of self-recruitment,
which has been demonstrated in Dungeness crab populations
in prior modelling work (Rasmuson et al., 2022), and tag-
ging studies that indicate minimal distance travelled by adults
(Hildenbrand et al., 2011).

For each fishing observation from the logbooks, we identi-
fied the nearest point on the J-SCOPE grid and assigned the
predicted ocean conditions from that grid point for the corre-
sponding calendar month in the same year or at the appropri-
ate lag. J-SCOPE model validation methods are available in
the “Methods” section of the Supplementary Materials.

Statistical methods for generalized additive model
(GAM)

We used GAMs to predict crab catch rates as a function of
“static,” “dynamic,” and “lagged” ocean conditions. These
models were trained with a subset of available logbook data
pooled for Oregon and Washington (2007/08–2015/16 for
OR; 2009/10–2015/16 for WA); more recent crab seasons
were retained for model validation (2016/17–2017/18 for
OR; 2016/17–2018/19 for WA). Predictors were considered
individually (univariate GAMs, see Supplementary Materials
and Supplementary Table 3) and in combination to investigate
the importance of individual variables on crab catch rates as
well as to develop a best-fit model for operational forecasting.
As is common in oceanographic studies, preliminary investi-
gation suggested a correlation between depth and other co-
variates, and between the same covariate but at different lags
(e.g. bottom oxygen at 3 vs. 4 year lag; Supplementary Table
4). We use Akaike Information Criterion (AIC) model selec-
tion to test whether these covariates add explanatory power
even when penalized for the increased model complexity.

We used a Gaussian error distribution and an identity link
function (mgcv package in R; Wood, 2004). To improve nor-
mality, we log transformed the response variable after adding
0.01 to account for any catch records of zero kilograms
(N = 196; ∼0.1% of total records). All but three explanatory
variables were smoothed with a spline function and allowed
three knots (k), which captures a unimodal niche response to
environmental conditions (e.g. Chust et al., 2014). The excep-
tions were that the year effect term was allowed to vary each
crab season (i.e. k = 9) to account for unexplained interannual
variability, and the latitude and longitude terms were treated
as an interactive tensor term to account for spatial autocor-
relation. Additionally, spatial autocorrelation was evaluated
with variograms and Moran’s “I” statistic (Moran, 1948; see
Supplementary Materials).

Model fit was estimated with % deviance explained and
an AIC score (Akaike, 1974). AIC is a metric used for model
selection that optimizes model complexity by taking into ac-
count model fit while penalizing for additional terms (Akaike,
1974; Burnham and Anderson, 2002). The GAM with the
lowest AIC score was selected as the best model and was used
to develop forecast products.
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Table 1. GAMs fit to predict Dungeness crab catch rates (ln(kg/pot)]. Deviance explained (%) and �AIC (relative to the best model, GAM_SDL, for
which �AIC = 0) estimate model fit. s indicates smoothed terms; t indicates a tensor interaction term. DS = day in season, DH = depth; ST = soak time;
YR = year, LL = latitude x longitude, SSH = sea surface height, BA = bottom aragonite, BpH = bottom pH, BS = bottom salinity, BT = bottom temperature,
BO = bottom oxygen, CH = 2 m integrated chlorophyll, PDO = Pacific Decadal Oscillation, l4 = variable that was lagged four years, l3 = variable that was
lagged 3 years. GAM models included D = “dynamic,” L = “lagged,” and S = “static” groups of predictor variables.

Model Name Description % Dev. Explained Delta AIC

Day in Season (DS) s(DS) 35.6 66 714
DS + static (GAM_S) s(DS) + s(DH) + s(ST) + s(YR) + t(LL) 54.6 5 941
DS + dynamic (GAM_D) s(DS) + s(SSH) + s(BA) + s(BpH) + s(BS) + s(BT) +

s(BO) + s(CH)
47.3 31 858

DS + lagged (GAM_L) s(DS) + s(BTl4) + s(BOl4) +s(CHl4) + s(PDOl4) +
s(BTl3) + s(BOl3) + s(CHl3)

50.5 20 928

DS + dynamic + lagged
(GAM_DL)

s(DS) + s(SSH) + s(BA) + s(BpH) + s(BS) + s(BT) +
s(BO) + s(CH) + s(BTl4) + s(BOl4) +s(CHl4) +
s(PDOl4) + s(BTl3) + s(BOl3) + s(CHl3)

51.7 16 626

DS + static + dy-
namic + lagged
(GAM_SDL)

s(DS) + s(DH) + s(ST) + s(YR) + t(LL) + s(BA) + s(BS)
+ s(BT) + s(BO) + s(CH) + s(BTl4) + s(BOl4) +s(CHl4)
+ s(BTl3) + s(BOl3)

56.2 0

GAM performance testing

Over the model training period (2007/08–2015/16), we eval-
uated the spatially explicit skill of the GAM in two ways. The
first strategy was to compare the raw values of the observed
and reforecast CPUEs. We generated a CPUE reforecast for
each year using known fishing behaviours from the logbooks
(i.e. fishing location, date, and soak time for pots) and dy-
namic and lagged ocean conditions from J-SCOPE as input for
the catch rate model. These raw CPUE values were averaged
within each 0.1o latitude x 0.1o longitude grid cell, and a cor-
relation coefficient was calculated between the raw observed
and reforecast CPUE values to quantify model performance.
The second strategy relied on anomaly values, which are used
to understand how different a particular year is from clima-
tological, or average, values. Observed and reforecast clima-
tologies were generated by averaging the CPUE values within
each grid cell across all model training years. By subtracting
the raw CPUE value (either observed or forecast) for each year
from the climatology, we compared the observed and refore-
cast anomalies by calculating an anomaly correlation coeffi-
cient (ACC). We also estimated the spatial bias of the model
by subtracting the observed CPUE climatology from the re-
forecast CPUE climatology.

Finally, we investigated changes in model performance over
time. Given the decision context of this derby-style fishery,
we calculated the correlation coefficient (r) over the first
10, 20, 30, 50, 75, 100, 125, 150, and 180 days into the
crab season. We also generated spatial CPUE maps inte-
grated from the start of the season to these same time points
to understand how fishing effort and model skill change
spatially.

Model predictions

We predicted spatial distribution of catch rates averaged over
the entire forecast season using various fishing behaviours.
These catch rate maps allow a general understanding of shifts
in crab density and persistence of low-catch areas over time.
For reforecasts, these gridded maps (0.1◦ latitude x longitude)
were based on dynamic J-SCOPE ocean conditions and fishing
behaviour as reported in the logbooks; these were generated
to calculate a baseline estimate of model skill on crab sea-
sons for which the GAM had not been trained, assuming we
could forecast fishing effort perfectly. For true forecasts, for

which the fishing effort would be unknown, we estimated fish-
ing behaviour based on two hypotheses: (1) fishing behaviour
for a given season should be most similar to the prior sea-
son, so we used fishing behaviour from logbooks from one
crab season prior; or (2) assuming the absence of any trends
in fishing effort, long-term average fishing behaviour should
approximate fishing effort for the forecast, so we used fishing
behaviours from all previous crab seasons for which logbooks
were available for both Washington and Oregon (i.e. 2009/10
to the prior crab season). These forecasts are of interest to
managers concerned about zones of poor ocean conditions
(such as hypoxic areas) or unproductive local fisheries; we do
not intend these maps to guide crab fishers to “hotspots.” At
a 0.1o resolution, we expect fishers to be more skilled than
any model (and see Hobday et al. (2019) regarding pitfalls of
mis-applying forecasts).

Results

GAM selection

Several combinations of predictor variables were fit as GAMs
to predict Dungeness crab catch rates (ln(kg/pot); Table 1),
and the model with the lowest AIC score was identified as
the best fit model (Akaike, 1974; Burnham and Anderson,
2002). The most basic GAM contained only “day in season,”
which was shown to explain the most variance of any single
predictor variable (∼36%; Supplementary Table 3). Adding
static variables to the “day in season” GAM led to a sub-
stantial increase in deviance explained (54.6%), and improve-
ment in �AIC. Adding only dynamic (GAM_D) or only lagged
(GAM_L) oceanographic variables to the “day in season”
GAM also led to increases in deviance explained (to 47.3
and 50.5%, respectively) and improvements in �AIC. When
both dynamic and lagged variables were added (GAM_DL)
to the “day in season” GAM, the model fit improved slightly
(deviance explained = 51.7%). Finally, when static, dynamic
and lagged variables were included (GAM_SDL), and non-
significant terms were removed, the model had the highest
deviance explained (56.2%) and the best (i.e. lowest) AIC
score (Table 1). In terms of AIC, this optimal model is 5941
units better than the “next-best” model (the GAM with day
in season and static variables), with 1.6% higher deviance ex-
plained.
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Figure 3. The effect of predictor variables on Dungeness crab catch rates. The response scale reflects natural log-transformation. Smooth functions
represent additive effects of each predictor in the GAM while the other predictors are held at their average value; shading indicates ± 2 SE, and the “rug
plot” along the x-axis represents occurrence of observations. The range of the y-axis indicates the relative importance of the covariate. All variables
were limited to a maximum of three inflection points (i.e. “knots” ≤ 3) except "year," which was allowed nine knots. Static variables (top row): (A) depth,
(B) soak time, (C) day in season, and (D) year effect; dynamic variables (second row): (E) bottom temperature, (F) bottom salinity, (G) bottom oxygen, (H)
bottom aragonite saturation state, and (I) 2 m integrated chlorophyll a; and lagged variables (bottom row): (J) 4 yr-lagged bottom temperature, (K)
3 yr-lagged bottom temperature, (L) 4 yr-lagged bottom oxygen, (M) 3 yr-lagged bottom oxygen, and (N) 4 yr-lagged 2 m integrated chlorophyll a.

To better understand the relationships between individual
predictors and crab catch rates within the best-fit GAM, diag-
nostic plots were generated in which one variable was plotted
over its entire range (x-axis) while all other variables were
held at their average value (Figure 3; Supplementary Fig. 1).
The range on the y-axis indicates the relative importance of a
covariate, with day in season being the strongest predictor of
catch rate, as identified previously in the univariate GAMs.

Evaluation of GAM performance

The correlation coefficients (r) and ACCs calculated for spa-
tial forecasts showed that the GAM demonstrated moderate
forecast skill for the model training period (r = 0.60 +/− 0.09;
ACC = 0.50 +/− 0.09; Supplementary Fig. 2; Supplementary
Table 5).

Spatially explicit forecasts of catch rates revealed the
model’s tendency to underpredict catch rates over much of the
domain [Figure 4; -21 ± 20% (mean ± SD)]. However, the
highest rates of underprediction (∼50–80% lower) and over-
prediction (∼50–70% higher) of the model tended to occur in
isolated areas along the coast and at the shelf break.

We also investigated temporal changes in the fishery. As
expected in this derby-style fishery, predicted CPUE aver-
aged over the model domain decreased rapidly over the first
∼ 100 days of the crab season ( Figure 5). Then the change in
CPUE flattened out ( ∼100–120 days after the season open-
ing) and eventually began to increase slightly (>120 days after
the season opening). Critically, the GAM was able to qualita-
tively capture observed differences between years, including
peak CPUE as well as the rate of decline over the crab season.

Finally, when we considered model skill over time and space
(Supplementary Fig. 3), we found that model skill for almost
all locations improved when integrated over longer time pe-
riods (average r = 0.47 at day 10; average r = 0.65 at day
180). By the end of the forecast period, the model is skillful
in most locations (r > 0.5), with the exception of low skill
(r < 0.25) for isolated areas along the shelf break and in the
farthest northern extent of fishing in Washington.

Forecast products for 2016/17–2018/19 crab seasons

Spatiotemporal forecasts of crab CPUE displayed moderate
skill when fishing behaviour—i.e. fishing location, date, and
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Figure 4. Observed (A) and forecast (B) CPUE climatologies for 2007/08–2015/16 crab seasons. Deeper green colors indicate higher CPUE yields.
Percent model bias (C) was calculated by subtracting the observed from the forecast climatology and then normalizing by the observed catch. Orange
indicates that the forecast is biased high (overprediction), while purple indicates that the forecast is biased low (underprediction); white indicates little or
no model bias. Gray cells have small sample sizes (strings) so those cells have been obscured in the observations and bias figures.

soak time—was known, but skill declined sharply in true fore-
cast mode, without knowledge of actual fishing behaviour.
Spatial CPUE forecasts were produced for the crab logbooks
that had been excluded from the GAM model training (i.e.
crab seasons 2016/17–2018/19 for Washington and 2016/17–
2017/18 for Oregon; e.g. Figure 6). Forecasts performed on
par with prior crab seasons (Supplementary Table 5) when
they were generated using known fishing behaviour (Figure
6A; first two columns of Table 2). True forecasts, however,
require assumptions about fishing behaviour, which is diffi-
cult because of its wide spatial and temporal variability in
the past (Supplementary Fig. 4). When fishing behaviour was
approximated using fishing effort from the prior crab sea-
son (Figure 6B; columns 3 and 4 of Table 2) or an average
from all years prior (Figure 6C; columns 5 and 6 of Table 2),
GAM model skill (r and ACC values) was lower than when
known fishing behaviour was used, though using fishing be-
haviour from all previous crab seasons performed better (for
forecasts for 2016/17–2018/19, average r = 0.43 and average
ACC = 0.17).

Discussion

Globally, marine invertebrate fisheries are rapidly expanding
and filling increasingly important roles as target species (An-
derson et al., 2011; Harvey et al., 2021). Dungeness crab in
particular plays a central role for US West Coast fishing com-
munities (Fuller et al., 2017; Fisher et al., 2021), yet its man-
agement differs starkly from that of high-value finfish. Dun-
geness crab are managed within the “3S”framework (i.e. “sea-
son,” “size,” and “sex”), by which managers adjust the season
opening dates, set minimum size limits, and restrict the re-
tained catch to males (Rasmuson, 2013). This relatively simple
management system has been successful in coping with strong
interannual fluctuations in landings of this short-lived species.
In our research, we ask to what extent foresight about the po-
tential drivers of those fluctuations could supplement the man-
agement system. We see this as an extension of dynamic ocean
management approaches (e.g. Lewison et al., 2015; Maxwell
et al., 2015), by leveraging advances in seasonal ocean fore-
casting (Siedlecki et al., 2016) rather than solely relying on
real-time observations. Overall our work (1) establishes the
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Figure 5. Smoothed lines show each year’s observed (solid) and forecast (dashed) CPUE (log(kg/pot)) by day in season for this derby-style fishery.
Shading indicates the 0.95 confidence interval.

importance of ocean conditions as drivers of Dungeness crab
catch rates, (2) illustrates that ocean forecasts are one of sev-
eral necessary components to build a forecast system predict-
ing spatial catch rates, and (3) suggests that a skillful forecast
of fishing behaviour would be needed for true forecasts to in-
form managers of how future catch rates will deviate from
average catches. Alternatively, consistent, spatially explicit ob-
servations of crab abundance, independent of the fishery data,
co-located with in situ ocean conditions would also enable this
kind of forecasting, as has been successfully demonstrated in
other J-SCOPE forecasting work (Kaplan et al., 2016; Mal-
ick et al., 2020; Norton et al., 2020). Our results are relevant
for other highly productive, but also highly dynamic, global
invertebrate fisheries.

Ocean conditions affect crab catch rates

To our knowledge, this is the first time continuous relation-
ships between static, dynamic, and lagged environmental vari-

ables and Dungeness crab catch rates have been reported. We
found that both dynamic and lagged oceanography were im-
portant for predicting crab catch rates as indicated by the
results of the best-fitting GAM. Although “day in season”
alone explained about one third of the variability in crab
catch rates (35.6% of deviance explained), when we added
predictor variables both concurrent with the fishing period
(“dynamic” conditions) and historical (“lagged” conditions)
to account for egg and/or larval environmental exposure, our
model fit improved. Finally, by adding a few more “static”
conditions associated with fishing location, our best fit model
(GAM_SDL) explained the majority of deviance in catch rates
(56.2%) and was able to forecast catch rates with moder-
ate skill (ACC = 0.45 and r = 0.54 in predict mode, using
known fishing behaviour). These results build on prior stud-
ies focused on generating statistical habitat models for other
species that have reported increased model fit and skill when
dynamic oceanographic variables were included in addition to
static variables (e.g. Brodie et al., 2018; Abrahms et al., 2019).
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Figure 6. Case study of 2017/18 forecast showing how fishing behaviour affects predicted CPUE anomaly from forecasts using (A) observed fishing
behaviour, (B) fishing behaviour from one crab season prior (2016/17), and (C) fishing behaviour from all prior crab seasons for which both Oregon and
Washington logbooks were available (2009/10–2016/17).

Table 2. Forecast skill of the GAM_SDL model depended on which fishing behaviours were used. Correlation coefficient (r) and ACC were calculated for
the observed versus forecast crab catch rates for each year in the testing subset (2016/17–2018/19) when the following fishing behaviours were used: (A)
true (observed) fishing behaviour, (B) fishing behaviour from one year prior, or (C) fishing behaviour from all previous years for which data from Washington
and Oregon were available (2009/10–prior yr). Only Washington logbooks were available for the 2018/19 crab season, so fishing behaviours from Oregon
logbooks were omitted for these forecasts.

Re-forecast: Observed fishing
behaviour

Forecast: Fishing behaviour from
one year prior

Forecast: Fishing behaviour from
all years prior

Crab Year r ACC r ACC r ACC

2016/17 0.48 0.44 0.27 -0.08 0.38 0.14
2017/18 0.41 0.32 0.31 0.21 0.41 0.05
2018/19 0.72 0.59 0.41 0.22 0.48 0.31
Avg 0.54 0.45 0.33 0.12 0.43 0.17
Std 0.17 0.13 0.07 0.17 0.05 0.13
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The variables selected by the model and their relationships
with catch provide insights into the controls over observed
interannual fishery variability. For example, although we had
hypothesized that chlorophyll concentration would be pos-
itively correlated with catch rates, our best fit model pre-
dicts that catch rates are high at both high and low chloro-
phyll levels (Figure 3I). One possible explanation of this cor-
relation is that high chlorophyll levels correspond to high
food availability and the crab population may increase com-
mensurately. Conversely, low chlorophyll concentrations may
correspond to low local prey productivity, and crabs may
seek food wherever they can find it, including bait in a crab
pot, elevating their catchability. Curtis and McGaw (2012)
showed that adult crabs in the laboratory exposed them-
selves to deleterious conditions to obtain food. Stevens et al.
(1984) also reported that food-limited adult crabs would en-
ter lower quality habitat to pursue prey. Further work is
needed to mechanistically determine the causality of the rela-
tionships between chlorophyll concentrations and crab catch
rates.

The relationship between oxygen concentration and crab
catch rates was also unexpected; we found a negative corre-
lation where we had expected a positive correlation. Anecdo-
tally, it is reported that crabs are usually highly mobile under
normoxic conditions and are still active even in hypoxic con-
ditions (∼2 mg O2 l−1; ∼60 μmol/kg); however, crabs may
experience strong low oxygen effects at oxygen concentra-
tions <1 mg l−1 (∼22 μmol/kg; Jack Barth, pers. comms.),
making them more docile and lethargic (J.S., pers. obs.), and
perhaps easier to catch. Another possible explanation is that
low oxygen concentrations drive habitat compression, elevat-
ing catch rates in surrounding areas (Froehlich et al., 2014).
Alternatively, the relationship between oxygen concentration
and catch rates may be influenced by other processes, such as
La Niña conditions, which may raise the thermocline, poten-
tially spurring increased primary production while decreasing
bottom oxygen simultaneously (Turi et al., 2018). We also ob-
serve a high degree of model uncertainty at low oxygen con-
centrations (Figure 3), which may result from fewer observa-
tions in this range or may indicate variable relationships over
space or time.

Interestingly, individual predictor variables (e.g. tempera-
ture, oxygen, or chlorophyll concentration) often exhibited
a distinct relationship with crab catch rates when consid-
ered “dynamically” versus lagged by 3 or 4 yrs. These re-
sults may arise because eggs, larvae/juvenile, and adult crabs
have different habitat needs and tolerances (Sulkin et al.,
1996; Brown and Terwilliger, 1999; Berger et al., 2021). Al-
ternatively, since their early life stages are planktonic (∼70–
180 days; Moloney et al., 1994) and they undergo ontogenetic
migrations (Shanks, 1986; Rasmuson, 2013), our assumption
that eggs, larvae, and juvenile crabs experience the environ-
mental conditions at the locations where they are ultimately
caught as adults may be an oversimplification. Future stud-
ies might benefit from incorporating larval dispersal mod-
elling (Norton et al., 2020; Berger et al., 2021) or estimates
of crab movement to further examine relationships between
lagged conditions and crab catch. Additionally, given the low-
frequency variability of some of the lagged predictors, such
as the PDO (Mantua et al., 1997), the relationships between
potential predictor variables and crab catch rates should be re-
evaluated when we have a longer observational record avail-
able.

Catch forecasts: skill assessment and gaps
identified

A key part of CPUE forecast development is rigorous perfor-
mance testing and identification of bias. Our forecasts predict
crab catch rates for Oregon and Washington, spanning crab
years 2007/2008–2018/2019, with some notable challenges.
Our CPUE model is capable of forecasting seasonal trends and
interannual variability in catch rates (Figure 5) with minimal
bias over the majority of the domain (<30% bias; Figure 4),
although some isolated areas along the shelf break (∼200 m
depth) or nearshore exhibit poorer skill and/or higher bias.
Limited fishing observations in these regions (Figures 4C; Sup-
plementary Figures 3 and 4) as well as late-season fishing in
the north likely make these regions less predictable (Supple-
mentary Figure 3).

Seasonal forecasts of ocean conditions typically experience
skill that decays the further they are from their initialized
state. However our CPUE forecasts showed the highest cor-
relation between observed and predicted CPUE when cal-
culated over a full 180 fishing days. This implies that the
September-initialized ocean forecasts add skill as far as late
May. One possibility is that this is driven by inherently more
predictable ocean dynamics after the spring transition, re-
ported for NOAA’s CFS model (CFSv2) which forces J-SCOPE
(Jacox et al., 2019). Additionally, since day in the crab season
is a strong predictor of catch rate, the model’s ability to predict
the sharp decline in CPUE over the course of the crab season
contributes to its strong skill.

The importance of fishing behaviour in driving economic
and ecosystem outcomes in marine systems is well docu-
mented (Fulton et al., 2011), and we found that fishing be-
haviour impacted our CPUE forecast skill as well. When fish-
ing patterns were known, we skillfully predicted crab catch
rates (>50% variance explained in the historical training set;
average r = 0.6; average ACC = 0.5; Supplementary Table
4). However, fishing behaviour varied widely among years
(Supplementary Figure 4), making it challenging to select ac-
curate fishing behaviour in true forecast cases. Payne et al.
(2017) emphasize that fisherman behaviour responds not only
to changes in species abundance, but also to markets, man-
agement, and social dynamics. Recent studies of US West
Coast fishery participation indicate that Dungeness crabbing
involves a wide variety of vessel types, fishing strategies, and
diverse alternative target species, which may affect fishing be-
haviour in complex ways (Fuller et al., 2017; Fisher et al.,
2021). Furthermore, recent years have tended to have later
season opening dates (Supplementary Table 1), potentially
changing fishing behaviour. In part, these later opening dates
have been managers’ responses to harmful algal blooms, with
subsequent adjustments by fishermen (Moore et al., 2020). In
our true forecasting cases (Figure 6; Table 2), when fishing be-
haviour was approximated rather than known, the forecasts
had decent correlation with observed catches, but anomaly
correlations degraded. This means that the model replicates
the typical seasonal and spatial trends in catch rate, but not
year-to-year variation in catch rates. Overall, the challenge
of predicting anomalous commercial fishery catch rates illus-
trates the importance of fishing behaviour in forecasts for cou-
pled systems.

The forecast’s reliance on accurate fishing behaviour may
be entrenched in this method since we not only use fishing be-
haviour covariates directly in the GAM (e.g. day in season,
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location, and soak time), but we also match the catch data
to the spatially-explicit dynamic and lagged oceanographic
conditions based on fishing location. Simulation approaches
such as agent-based modelling (Bailey et al., 2019; Dolder
et al., 2020) offer great promise to understand fishing fleet
dynamics and choices of fishing location and timing. Alter-
natively, fishery-independent standardized surveys, often con-
ducted for finfish and integrated into dynamic habitat mod-
elling and management strategies (e.g. Kaplan et al., 2016;
Clavel-Henry et al., 2020; Malick et al., 2020), would help
eliminate this source of uncertainty in our forecasts. This
would require additional resources, and given the apparent
sustainability of the “3S” management scheme (Richerson et
al., 2020), state and tribal fishery managers (authors K.C.,
D.A., and J.S.) do not consider increased investment in sys-
tematic surveys to be feasible or necessary for effective man-
agement currently. Finally, our method assumes that the ma-
jority of legal-sized male crabs are caught annually, but in
practice the proportion of crabs caught may vary significantly
between years (Methot and Botsford, 1982). Estimates from
Richerson et al. (2020) suggest that ∼65–95% of legal-sized
male crabs were caught each year in Washington and Oregon
during our study period (2007–2016). This variability may
be due in part to crab density effects and variable fishing
effort.

Co-production of forecast products

To support management decisions with ocean forecasts, en-
gagement with managers, from the grant proposal through to
this paper, was critical. Managers were able to indicate high-
est priority needs for forecast products and contributed on-
the-ground knowledge throughout the process, e.g. by identi-
fying key drivers to consider as predictors in the GAM. Ad-
vances for both state and tribal applications require a cycle of
feedback and revision to tailor, update, and improve forecasts
for specific use. In the future, additional forecast products for
Washington could help inform co-management by the state
and coastal tribes, which is a unique situation guaranteed by
treaty but also particularly vulnerable to shifting ocean con-
ditions.

Supplementary data

Supplementary material is available at the ICESJMS online
version of the manuscript.
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