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Summary: Diagnosing a coupled system with linear inverse modelling (LIM) can provide insight into the nature
and strength of the coupling. This technique is applied to the cold season output of the GFDL
GCM, forced by observed tropical Pacific SSTs and including a slab mixed layer ocean model
elsewhere. It is found that extratropical SST anomalies act to enhance atmospheric thermal
variability and diminish barotropic variability over the east Pacific in these GCM runs, in agreement
with other theoretical and modelling studies. North-west Atlantic barotropic variability is also
enhanced. However, all these feedbacks are very weak. LIM results also suggest that North Pacific
extratropical SST anomalies in this model would rapidly decay without atmospheric forcing induced
by tropical SST anomalies.
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1. INTRODUCTION

Understanding the nature and strength of atmosphere–ocean coupling in the extratropics is important
on a variety of time scales. Recently Barsugli and Battisti (1998) suggested that the primary effect of
coupling is to reduce the effective thermal damping of both sea surface temperature (SST) and surface
air temperature; that is, it acts to enhance thermal variability.

Numerous GCM studies (e.g. Palmer and Sun, 1985; Pitcher et al., 1988; Ferranti et al., 1994; Peng
et al., 1995; Peng and Whitaker, 1999) have used prescribed extratropical SST anomalies to force an
atmospheric response. The nature of this response varies significantly from model to model, however,
and is dependent upon details of the model including its climate. These studies, moreover, all suffer
from the same drawback: the real system is coupled. An SST anomaly may be due to a pre-existing
atmospheric anomaly and the SST anomaly may evolve in response to any atmospheric anomaly it
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creates. Thus, fixed extratropical SST anomaly experiments can lead to incomplete ideas abut the
nature of the real coupling.

Ideally, we would like to diagnose extratropical ocean–atmosphere coupling from observations, or
from output of realistic coupled GCM simulations. Such diagnosis is often done using statistical
methods based solely on simultaneous covariability relations between oceanic and atmospheric
variables. But such an analysis cannot yield the normal modes and optimal growth structures of the
coupled system, and cannot produce explicit knowledge of the feedback terms. (See Newman and
Sardeshmukh, 1995 and Frankignoul et al. (1998) for further discussion of the drawbacks of
simultaneous covariability statistics.)*

In this paper, we suggest that linear inverse modelling (LIM; e.g. Penland and Sardeshmukh, 1995;
Penland, 1996; Branstator and Haupt, 1998; DelSole and Hou, 1999) is an effective technique to
diagnose a coupled system quantitatively. As our example, we apply LIM to cold season output of a
seasonally varying GCM, forced by observed tropical Pacific SSTs and including a slab mixed layer
elsewhere. We must first ask: can this GCM dataset be usefully diagnosed with LIM; that is, can it be
described in terms of linear dynamics driven by Gaussian white noise? If so, then we can proceed to
ask: what are the impacts of extratropical air-sea coupling in the model?
*Canonical Correlation Analysis (CCA) and Singular Value Decomposition (SVD) are two such methods. Note that even
when these methods are applied to lagged data, they still fail in the manner described above.
2. LINEAR INVERSE MODELLING

Consider the general coupled system:

where xA represents one or more atmospheric (A) state variables and yO one or more oceanic (O) state
variables. Fij are the linear dependencies of variable j on variable i; Rx and Ry can represent non-linear
terms and/or functions of state variables not contained in either xA or yO.

We try to model (1) as:
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where

and � is Gaussian noise which is white in time but can have finite spatial correlation. Equation (2) can
be an excellent approximation to the fully non-linear system if the decorrelation time scale of the
non-linearities in Rx and Ry, is much shorter than the time scales of linear dynamics inherent to B (e.g.
Hasselmann, 1976; Penland, 1996). Then linear analysis is appropriate to diagnose this coupled
system.

The solution to eqn (2) is:

X(t+�0)=exp(B�0)X(t)+�(t+�0) (4)

where �(t+�0) is a function of the stochastic forcing � integrated over the time interval [t,t+�0]. From
the theory of linear inverse modelling (LIM) (e.g. Penland and Sardeshmukh, 1995), eqn (4) is solved
as:

where T represents the matrix transpose, and brackets K L a time mean. Thus B (and hence, the
feedback submatrices Fij) is estimated from the zero- and �0-lag covariance statistics of X. Note that
principal oscillation patterns (POPs; Hasselmann, 1988) are the normal modes of the (stable) B
operator.

One important advantage of LIM over other linear statistical techniques is that its inherent
assumptions, especially of linearity, are thoroughly testable. If eqn (2) is a good approximation of eqn
(1), then the computation of B from eqn (5) should be roughly independent of lag �0. Also, since the
forcing � has a Gaussian distribution, X should as well. Of course, if eqn (2) is a good model, it should
produce good forecasts of X(t) given only X(0). Actual forecast error should evolve in a manner
consistent with the derivation of the expected error �(t+�), which can be determined from eqn (2)
using standard methods of stochastic differential equations. A complete discussion of these and other
tests of LIM can be found in Penland and Sardeshmukh (1995).

One drawback of many statistical models including LIM is the possibility that Rx and Ry linearly
depend upon another variable (say, v) which is not included in the specification of xA and yO. In this
case, LIM remains valid as long as v is a linear function of x and y . Of course, it may not be clear
A O
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which variables are dependent and which are independent, which could obscure some questions of
causation (Frankignoul, 1999).
3. MODEL DATA

We have applied LIM to output from the GFDL R30S14 ‘‘TOGA-ML’’ model runs (Alexander and
Scott, 1995). The GCM varies seasonally, is forced by observed tropical Pacific SSTs, and has a 50-m
slab mixed layer elsewhere over the global ocean. The model was run as a four-member ensemble for
the years 1950–1995. Note that these runs are not entirely independent, since each member of the
ensemble has the same tropical SST.

For the present analysis, the oceanic variable yO is defined as a vector containing SST anomalies
north of 20�S. The atmospheric variable xA is defined as a vector containing 200 mb geopotential
height anomalies and 850 mb geopotential height anomalies, also north of 20�S. Data are interpolated
to a 5��5� grid and averaged into monthly means for the November–March (NDJFM) period.
Anomalies are determined as departures of the monthly mean from the corresponding climatological
monthly mean, where the climatology is defined as both a time and ensemble mean.

Even with 180 winters of model output, there are not enough data to determine B accurately at
every grid point. Also, we wish to avoid merely fitting data with as many numbers as there are degrees
of freedom. Thus, we truncated the data in EOF space to the leading 30 geopotential height EOFs and
the leading 20 SST EOFs. This truncation retains about 70% of domain-integrated variance for each
field. Retaining either fewer or more EOFs produced a slightly poorer model, as measured by forecast
skill.
4. RESULTS

To test the appropriateness of LIM in this case, we first see if it can outperform a lag-1 autoregression
(AR-1) model. This is done by making forecasts of independent data with the LIM via a jack-knifing
procedure: all four ensemble members of a given year were removed from the dataset, B was
computed for �0=1 month, and then that B was used to make both one- and two-month forecasts for
the ensemble members of the missing year. Local anomaly correlations of jack-knifed LIM forecasts
were compared with forecasts produced from a AR-1 model of 200 mb geopotential height. This was
done by correlating time series of forecast anomalies with untruncated GCM anomalies at each grid
point. Figure 1 shows that LIM forecasts are everywhere much better than AR-1 forecasts. Error
variances (not shown) of the LIM forecasts are similarly improved.
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Figure 1. Local anomaly correlation of 200 mb geopotential height forecasts using a two-month forecast lead, for the
four-member ensemble for NDJFM 1950/51–1994/95. (a) From the linear inverse model. (b) From the local AR-1
model. Contour interval is 0.1.
As a test of the effects of sampling, B was also computed from datasets from which one entire
ensemble was removed. All results shown below were found to be qualitatively unchanged, although
eigenvalues of eqn (6) did vary by up to 20%.

Other test results are similarly successful. For example, the distributions of all height and SST PCs
cannot be distinguished from Gaussian distributions (as determined by a Kolmogorov–Smirnov test
(e.g. Sardeshmukh et al., 2000) at the 95% significance level). Domain integrated error variance
develops with forecast time in a manner consistent with theory (Penland and Sardeshmukh, 1995).
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The inclusion of SST as a forecast variable improves the LIM forecast compared to an LIM which is
derived from geopotential height alone.

Our final test also produces an interesting result concerning optimal growth structures. We have
computed the eigenanalysis of:

G(�)TDG(�) and G(�)DG(�)T (6a,b)

where G=exp(B�) and D represents an L2 norm (that is, square integrable) of geopotential height
only. It can be shown (e.g. Farrell, 1988; Penland and Sardeshmukh, 1995) that the initial condition
which produces maximum global amplification of geopotential height anomalies will be the
leading eigenvector of eqn (6a), which will evolve after a time period � into the leading eigenvector of
eqn (6b).

Figure 2 shows these leading eigenvectors. On the left is the initial condition which optimizes
growth of Northern Hemisphere geopotential height anomalies. Two months later this pattern evolves
into the pattern on the right. Thus, optimal growth is associated with an ENSO-like SST anomaly,
which produces a strong extratropical anomalous height response reminiscent of the TNH pattern
(Barnston and Livezey, 1987). At the same time, an SST anomaly of opposite sign to the tropical
anomaly is induced in the central North Pacific. This feature is consistent with the atmospheric bridge
(Alexander, 1992; Lau and Nath, 1996).

A strong test of LIM is whether growth structures determined by G(�) are really relevant to the
development of anomalies in the full GCM. Figure 3 displays a scatterplot of the projection of GCM
anomalies upon the leading optimal structure against the projection two months later of GCM
geopotential height anomalies upon the leading growth structure. The high correlation between the
two ordinates indicates the success of the LIM.

Since B does indeed represent relevant linear dynamics of the coupled system, we can investigate the
feedbacks within it. Figure 4 displays the diagonal elements of the feedback submatrix FOA, separated
into SST feedbacks upon the baroclinic (that is, vertical difference) and barotropic (that is, vertical
sum) portions of the two geopotential height levels after a month. As expected, SST acts locally to
strongly enhance atmospheric thermal variability in the tropics. Extratropical thermal variability is
also locally enhanced, in agreement with Barsugli and Battisti (1998). Interestingly, feedbacks enhance
the barotropic atmospheric anomaly in the north Atlantic but weaken it in the central Pacific. This is
consistent with results from an earlier version of this GCM, where it was found that the fixed slab
mixed layer acted to slightly reduce upper-level atmospheric variability in the east Pacific (Bladé,
1999).

Localization of these feedbacks is a consequence of local characteristics of the time–mean height
and SST fields. Nevertheless, we expect that the feedbacks are likely to be much more complex than
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Figure 2. Left: Initial condition that maximizes the growth of geopotential height anomalies after two months. Right: Anomaly
pattern two months after the initial condition shown in the left column. Contour interval is 0.1 K for SST anomalies
and 5 m for height anomalies.
this simple picture, since we have not yet examined the offdiagonal elements of FOA. A full analysis
would compute preferred modes of the feedback, which can be obtained from eigenvector analysis.
This has not yet been done but is a straightforward calculation given B.

We also estimate the importance of the feedbacks by making forecasts with B and then repeating
these forecasts with an altered B operator in which feedback of the extratropical SST upon the
atmosphere is removed. Forecast anomalies for each set (not shown) are very similar. The feedback
reduces geopotential height anomalies by less than 5% over the Pacific and increases anomalies by less
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Figure 3. Projection of anomaly upon optimal growth structure vs projection of height anomaly on evolved structure two
months later.
than 10% over the north Atlantic. This suggests that the extratropical SST effect upon the atmosphere
is quite weak in these GCM simulations.

Finally, as a counterpoint to GCM experiments using fixed SST anomalies (discussed in the
introduction), we can perform initial value experiments using eqn (2) as a surrogate for the full
coupled GCM. We can thus see whether an atmospheric response will act to reinforce or reduce an
initial SST anomaly. Two different cases are displayed in the two columns of Figure 5. In both cases,
there is an initial midlatitude SST anomaly, but in case 1 (left panels) there is also an initial tropical
SST anomaly of opposite sign. Both cases have no initial height anomaly. Note that since our system
is linear, the response to a tropical SST anomaly alone can be obtained by subtracting the right panels
from the left panels.
8



Figure 4. Local SST-atmosphere feedback coefficients. Red shading represents positive values; blue shading represents negative
values. The zero contour has been omitted for clarity.
After one month, the tropical SST anomaly produces a strong atmospheric response which is only
slightly stronger after another month. The SST anomaly weakens slowly, and persists for many
months (not shown). But when there is an initial SST anomaly only in the extratropics, results are very
different: a weak atmospheric response results one month later (not shown), but now the extratropical
SST is reduced by about a third each month. Taken together, these experiments suggest that the
decorrelation time scale of extratropical SST anomalies in the GCM is lengthened by a few months by
coupling to an atmosphere which is in turn forced by tropical SST anomalies. Whether this is true in
the real system (which has much more complex ocean dynamics than the simple fixed-depth mixed
layer used here) remains to be determined. Nevertheless, these results suggest that in this model, a
fixed extratropical SST anomaly would produce an unrealistic atmospheric response.
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Figure 5. Linear response to an initial SST anomaly located in (left column) the tropics and midlatitudes or (right column) the
midlatitudes only. Contour interval is 0.3 K for SST and 8 m for 200 mb heights.
5. SUMMARY

For these time scales, in this model, and at this time of year, linear inverse modelling has
demonstrated that:

(1) The dominant growing Northern Hemisphere anomaly starts as an SST perturbation in the
tropical Pacific, and develops into a TNH-like atmospheric pattern one month later.

(2) In the Pacific, extratropical SST anomalies may not be well maintained without atmospheric
forcing, such as that induced by tropical SST anomalies (the atmospheric bridge).

(3) Linear feedback of extratropical SST upon geopotential height anomalies is weak.

We plan to use this technique on model runs with more sophisticated ocean models, and compare the
feedbacks across the models. The same approach will also be applied to long integrations of other
coupled GCMs. A more detailed examination of the feedback operators (that is, submatrices within
B) is also currently underway.
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Finally, we have had considerable success using LIM to model observed streamfunction and
tropical heating from a 30-year data set (Winkler et al., 1999). It may be possible to similarly
determine B from observed atmosphere/SST fields, which we plan to attempt in the future.
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