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ABSTRACT

A high-resolution case-based approach for dynamically downscaling climate model data is presented.

Extreme precipitation events are selected from regional climate model (RCM) simulations of past and future

time periods. Each event is further downscaled using theWeatherResearch and Forecasting (WRF)Model to

storm scale (1.3-km grid spacing). The high-resolution downscaled simulations are used to investigate changes

in extreme precipitation projections from a past to a future climate period, as well as how projected pre-

cipitation intensity and distribution differ between the RCM scale (50-km grid spacing) and the local scale

(1.3-km grid spacing). Three independent RCM projections are utilized as initial and boundary conditions to

the downscaled simulations, and the results reveal considerable spread in projected changes not only among

the RCMs but also in the downscaled high-resolution simulations. However, even when the RCMprojections

show an overall (i.e., spatially averaged) decrease in the intensity of extreme events, localized maxima in the

high-resolution simulations of extreme events can remain as strong or even increase. An ingredients-based

analysis of prestorm instability, moisture, and forcing for ascent illustrates that while instability and moisture

tend to increase in the future simulations at both regional and local scales, local forcing, synoptic dynamics,

and terrain-relative winds are quite variable. Nuanced differences in larger-scale andmesoscale dynamics are

a key determinant in each event’s resultant precipitation. Very high-resolution dynamical downscaling

enables a more detailed representation of extreme precipitation events and their relationship to their sur-

rounding environments with fewer parameterization-based uncertainties and provides a framework for di-

agnosing climate model errors.

1. Motivation

a. Understanding extreme weather in a climate
framework

Precipitation extremes impact human social and eco-

nomic systems through flooding, erosion, and property

damage; thus, understanding the link between climate

and precipitation extremes attracts considerable atten-

tion (e.g., Karl et al. 2008). While evidence from both

models and observations suggests that precipitation

extremes increase as global temperatures rise, detailed

information about such changes (e.g., when, where, by

how much) is lacking (e.g., Frei et al. 2006; Fowler et al.

2007; Pall et al. 2007; Lenderink and van Meijgaard

2008, 2010; O’Gorman and Schneider 2009).

Climate models are used to assess potential changes in

future extreme events. While climate model perfor-

mance has improved considerably in recent years, the

simulation of extremes in particular is known to be fraught

with substantial deficiencies. Recent studies indicate that

horizontal resolution is a key factor in a model’s ability to

simulate observed extreme precipitation characteristics

and that statistical methods to downscale coarser datasets

often result in systematic spatial distribution and intensity

errors, particularly with respect to the highest moments of

variability [i.e., the most extreme events; e.g., Haylock

et al. (2006); Wehner et al. (2010); Gutmann et al. (2012)].

Because of the small scales of convective motions, the

realistic simulation of warm-season precipitation extremes

remains a salient challenge in climate model development

and improvement. The convective motions that drive

much warm-season midlatitude precipitation are not re-

solved in the current generation of global climate models

(GCMs) or in most regional climate models (RCMs). The
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combination of coarse model resolution and the resulting

requisite parameterization of processes such as convection

and boundary layer mixing are known to have deficiencies

including (but not limited to) (i) difficulty simulating the

diurnal cycle and representing interactions with parame-

terized radiative effects (e.g., Baldwin et al. 2002;Guichard

et al. 2004; Mahoney and Lackmann 2006), (ii) large

sensitivity to soil conditions (e.g., Hohenegger et al.

2009), (iii) unusual vertical heating profiles (e.g., Baldwin

et al. 2002; Chao 2012), and (iv) unrealistic convective

system organization and motion (e.g., Bukovsky et al.

2006; Li et al. 2008; Moncrieff and Liu 2006; Mahoney

and Lackmann 2007; Pritchard et al. 2011; Newman

and Johnson 2012).

Given these challenges, how canmethods to understand

the effects of climate change on extreme precipitation

events be improved? In this study, we investigate the

utility of a multistep downscaling approach by which

global-scale data (;100–200-km grid spacing) are dy-

namically downscaled to the regional scale (;50-km grid

spacing), and the regional-scale data are then further

downscaled to the storm scale (;1-km grid spacing). In so

doing, we address the following questions:

1) Does the intensity of heavy precipitation events

change in future climate scenarios?

2) If precipitation intensity changes are found, why?

That is, how do projected changes in instability,

moisture, and forcing for ascent affect projected

precipitation and convective system properties?

3) What are the strengths and limitations of a high-

resolution event-based downscaling approach?

b. Previous research

Early studies considering the effects of climate change

on small-scale extreme weather (e.g., floods, tornadoes,

and hail) largely relied upon the linkage of proxy at-

mospheric indicators and observations. Brooks et al.

(2003) used global reanalysis data to illustrate that the

product of convective available potential energy

(CAPE) and vertical wind shear could be used as a rea-

sonable representation of the observed distribution of

severe thunderstorm observations. Trapp et al. (2007a)

used RCM data to illustrate that a proxy for severe

thunderstorm formation increased under elevated green-

house gas forcing. Similar approaches to understand the

role of climate change on small-scale extreme events have

been used in other studies as well (e.g., Del Genio et al.

2005; Diffenbaugh et al. 2005; Marsh et al. 2007, 2009;

Trapp et al. 2007b; Van Klooster and Roebber 2009;

Trapp et al. 2009), but such studies are often limited by

(i) an inadequate record of historical storm and pre-

cipitation data, (ii) the coarse resolution of the data

analyzed (usually global reanalyses and climate model

simulations), and (iii) the often tenuous connection be-

tween large-scale environmental parameters and small-

scale weather extremes.

Many statistical and dynamical methods exist to

downscale climate data, each approach offering unique

strengths and weaknesses (e.g., Fowler et al. 2007;

Gutmann et al. 2012). Even within the two major classi-

fications of downscaling, there are numerous downscaling

options for a given objective or region. Dynamical

downscaling using RCMs has gained considerable popu-

larity, offering improved resolution of topography, land

surface heterogeneity, and atmospheric motions. Many

studies have found RCMs to better reproduce regional

precipitation patterns relative to GCMs (e.g., Dickinson

et al. 1989; Giorgi andBates 1989; Diffenbaugh et al. 2005;

Liang et al. 2006; Leung and Qian 2009; Gutowski et al.

2010); however, identifying and understanding the sources

of RCMerror and bias remain a challenge (e.g., Bukovsky

2012; Salzmann and Mearns 2012). One method toward

better understanding such errors is to examine RCM

performance on a limited set of key cases of interest, as

prototyped by foundational RCM papers such as Giorgi

and Bates (1989) and Dickinson et al. (1989).

While high-resolution climate simulations are often

limited by computational constraints, previous studies

have begun to pursue such an approach. Trapp et al.

(2007b) used a model simulation with explicit (non-

parameterized) convection to illustrate that global re-

analysis data can be dynamically downscaled to produce

extreme convective precipitation in approximately the

correct place and time. Trapp et al. (2010) used explicit

convection and 4.25-km grid spacing to simulate warm-

season regional climate statistics for severe weather over

a 10-yr period, demonstrating that, despite biases, the

high-resolution simulations adequately captured the

diurnal cycle and geographic distribution of convective

weather [i.e., type 2 downscaling; Castro et al. (2005)].

Rasmussen et al. (2011) present high-resolution simula-

tions of annual snowfall in Colorado that show excellent

agreement with observations if horizontal grid spacings at

or below 6km are used. Ohara et al. (2011) explored

methods of maximizing precipitation in high-resolution

simulations of a single extreme event toward better un-

derstanding potential effects of climate change. While

computational constraints usually limit high-resolution

methods to a short temporal period of integration or few

climate realizations tested, the increase in model resolu-

tion presumably affords more plausible simulations of

intense localized precipitation (e.g., Kendon et al. 2012;

Lackmann 2013).

Decision-making groups such as water resources

managers are also pursuing downscaling as a means to
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assess climate change impacts on a local scale (e.g.,

Hostetler et al. 2011). Projected increases in extreme

precipitation events prompt reassessment of flooding

impacts and design criteria for water infrastructure,

particularly in the western United States (e.g., Milly

et al. 2008; Barsugli et al. 2009; Hossain et al. 2010;

Ohara et al. 2011; Dominguez et al. 2012). Addressing

these challenges requires current and projected future

climate information at high spatial and temporal reso-

lution, and such data are generally not provided by

current climate models.

c. The Colorado Front Range: A flood-prone test
region

We choose to study the impact of climate change on

precipitation extremes in the Colorado Front Range.

The Colorado Front Range is typically defined as the

region extending northward from central Colorado

(around Colorado Springs, Colorado) to the Wyoming

border and from the eastern foothills of the southern

Rocky Mountains out to the eastern plains of Colorado

(Fig. 1). This region is chosen for its susceptibility to

flash flooding, the general regional concern for water

(e.g., supply, shortages, dam safety, and reservoir stor-

age practices), and also the presence of a sharp terrain

gradient upon which convective storms trigger. (This

latter aspect helps to constrain regionally the selection

of extreme precipitation events with similar dynamical

forcing, in contrast to regions such as the Great Plains

where convective triggering is more regionally diffuse.)

Flash floods are a concern in this region because of the

combination of steep complex terrain and the potential

for sustained heavy rainfall when moist easterly flow

impinges on themountains and rises to formprecipitation

in an environment of relatively weak midlevel flow (e.g.,

Toth and Johnson 1985; Trier et al. 2010).

Precipitation projections from both the global and

regional climate multimodel ensembles indicate a gen-

eral drying trend in mean warm-season precipitation

across Colorado, but the details of projected changes

differ, particularly for extreme events across all seasons

(e.g., Wang et al. 2009; Dominguez et al. 2012; Salzmann

and Mearns 2012; Wehner 2013; Alexander et al. 2013).

Discrepancies in these projections likely stem from

competing effects of increasing temperatures, shifting

storm tracks, and the multitude of ways that changes in

thermodynamic variables and storm dynamics may in-

teract with the region’s complex terrain. Because GCMs

cannot represent the complexity of the topography

along the Colorado Front Range and high spatial reso-

lution is needed to represent the dynamics of extreme

precipitation, downscaling appears to offer potential

toward better understanding climate change effects on

heavy precipitation in this region. Several recent studies

have focused on evaluating downscaling methods and

climate change projections for this region precisely

for the reasons stated above (e.g., Wang et al. 2009;

Rasmussen et al. 2011; Dominguez et al. 2012; Gutmann

et al. 2012; Salzmann and Mearns 2012). By exploring

high-resolution downscaling of extreme precipitation

events, we investigate whether such an approach can

improve confidence in projected changes through either

increasing model agreement or providing physical pro-

cess-based insight into why given changes occur. Alter-

natively, we consider whether the additional simulations

and increased spatial detail only widen the spectrum of

possible future projections.

2. Methods

GCM simulations are first downscaled to 50-km grid

spacing as part of the North American Regional Climate

Change Assessment Program (NARCCAP;Mearns et al.

2011). Extreme precipitation events are selected from the

NARCCAPRCMprojections. Each event is then further

downscaled using theWeatherResearch and Forecasting

(WRF) Model to generate a storm-scale (1.3-km grid

spacing) simulation in which convective parameterization

is omitted. Thus, the RCM data provide an intermediate

step from coarse-resolution global climate simula-

tions to the very high-resolution simulations of single

extreme events. As RCMs resolve the general topo-

graphic gradient of the Colorado Front Range and

FIG. 1. Map of west-central United States showing the case se-

lection target region used for analysis (TR; green box), the Colo-

rado Front Range region (Front Range; red box), the outer 4-km

WRFModel domain (Domain 1; yellow box), and the inner 1.3-km

WRF Model domain (Domain 2; blue box).
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resulting regional-scale circulations, the RCM inter-

mediate step also allows for a more relevant comparison

of RCM fields to the high-resolution simulations that di-

rect use of a GCM would not. A unique aspect of this

study is the use of a tiered dynamical downscaling

framework that better resolves key physical processes to

illustrate why, physically, changes in extreme pre-

cipitation are projected to occur.

a. Regional climate model data

Initial and boundary conditions for the high-resolution

event-based simulations are produced from three in-

dependent RCMs from NARCCAP. NARCCAP pro-

vides a multimodel ensemble of RCMs driven by a set of

atmosphere–ocean GCMs over a domain covering the

conterminous United States and most of Canada. Each

GCM–RCM combination simulates a past (1971–2000)

and future (2041–70) period, and the regional downscal-

ing is performed to 50-km grid spacing. The driving

GCMs utilize the A2 scenario from the Special Report on

Emissions Scenarios of the Intergovernmental Panel on

Climate Change (IPCC), in which carbon dioxide (CO2)

levels increase to roughly 600ppm by 2070 (Nakicenovic

and Swart 2000).

The NARCCAP RCM experiments discussed in this

manuscript are

1) GT: the time-slice experiment from the Geophysical

Fluid Dynamics Laboratory (GFDL) Climate Model,

version 2.1 (CM2.1). This experiment downscales the

fully coupled ocean–atmosphere GFDL CM2.1 global

model for the past and futureNARCCAP time periods

(i.e., time slices; e.g., Cubasch et al. 1995) using sea

surface temperatures and sea ice distributions from the

coupled GCM as boundary conditions for a higher-

resolution (50km) global simulation using the GFDL

Atmospheric Model, version 2.1 (AM2.1; see http://

www.narccap.ucar.edu/about/timeslices.html);

2) CW: a regional climate version of the WRF Model

driven by the global National Center for Atmo-

spheric Research (NCAR) Community Climate Sys-

tem Model, version 3 (CCSM3); and

3) CR: the Regional Climate Model, version 3, driven

by the Canadian Centre for Climate Modelling and

Analysis (Pal et al. 2007) Coupled General Circula-

tion Model, version 3 (CGCM3).

The largest precipitation events are identified and

grouped according to the RCM and use the following

naming conventions. When referring to the NARCCAP

RCMs, the datasets will be calledGT-rcm, CW-rcm, and

CR-rcm, respectively (although the GT experiment was

not technically simulated with an RCM but rather the

higher-resolution atmospheric GCM). When referring

to the high-resolution downscaled simulations, those

simulations will be designated GT-wrf, CW-wrf, and

CR-wrf.

b. Extreme event case selection

Extreme precipitation cases for both past and future

projections of each NARCCAP RCM were identified

using warm-season (June, July, and August) 24-h pre-

cipitation totals within a target region (TR) centered

over the Front Range of the ColoradoRockyMountains

(Fig. 1). Here, we take extreme to indicate the largest

daily precipitation events in the available RCM datasets

but acknowledge that semantics to describe such events

may differ in engineering and stakeholder communities

(e.g., Bonnin et al. 2011). Precipitation totals from June,

July, and August were ranked according to the largest

24-h precipitation (1500–1500 UTC) total at any one

RCMgrid point in the target region [note that increasing

the area over which precipitation was averaged to rank

events (to a moving region with dimensions 200 km 3
200 km within the target region) did not significantly

alter the resulting rank order]. The 10 largest 24-h pre-

cipitation values from unique events for 1971–2000 and

2041–70 defined the 10 largest cases for the past and

future simulations, respectively; our case selection crite-

ria thus, in essence, selects extreme environments from

each RCM for use in the high-resolution downscaling

approach described below. This approach has some ad-

vantages over other possible downscaling methods such

as simulation of a limited time-slice and ‘‘pseudo–global

warming’’ thermodynamically perturbed simulations (e.g.,

Sch€ar et al. 1996; Hara et al. 2008; Kawase et al. 2009;

Rasmussen et al. 2011; Lackmann 2013) because it

allows for the finer resolution of efficiently extracted

extreme events, and it accounts for (RCM projected)

changes in dynamical weather patterns and shifts in

storm tracks.

c. High-resolution model simulations

The Advanced Research WRF (ARW; Skamarock

et al. 2007)Model is used to generate the high-resolution

(1.3-km grid spacing) simulations of each RCM’s top 10

extreme precipitation events. WRF Model version 3.1.1

was utilized for all of the high-resolution simulations

in this study. The WRF Model is a fully compressible

nonhydrostatic model and uses a terrain-following hy-

drostatic pressure vertical coordinate.

Initial conditions are constructed directly from RCM

output as obtained from the NARCCAP dataset, with

no additional adjustment of CO2 or other greenhouse

gases. The WRF Model outer domain (4-km grid spac-

ing) includes much of the central and western United
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States, and the inner nest (1.3-km grid spacing) is cen-

tered on Colorado (Fig. 1). One-way nesting is used and

each simulation is executed according to the model

configuration details listed in Table 1. Each WRF sim-

ulation was initialized approximately 6 h prior to the

largest 3-h precipitation total as depicted by the RCM

simulation of the event, and each WRF simulation lasts

24 h in duration. Model output for each case is produced

hourly, and the internal model time step is 8 s. Experi-

ments were conducted to evaluate the sensitivity of

simulation results to both model physical parameteri-

zations (particularly to cloud microphysics and plane-

tary boundary layer parameterization) and to model

initialization time within a 9-h range around the largest

3-h precipitation amount. Overall results were not

qualitatively affected by these changes (i.e., variation in

precipitation amounts were on the order of 1–10mm);

although it remains an open question as to how to

best initialize high-resolution simulations from coarse-

resolution initial data in a way that allows for optimal

spinup of intermediate-scale features. The WRF Model

setup used for these downscaling experiments was

also evaluated by simulating observed events initialized

with both the National Centers for Environmental

Prediction (NCEP) North American Regional Re-

analysis (NARR) and the NCEP–NCAR reanalysis

data to confirm that this high-resolution WRF Model

framework is indeed skillful for the warm-season con-

vective event types in which we are interested (e.g.,

Mahoney et al. 2012).

d. Comparison of RCM precipitation with reanalysis
data

The three RCM datasets (GT-rcm, CW-rcm, and

CR-rcm) were chosen based on data availability and an

attempt to represent as large a portion of NARCCAP’s

RCM-generated spectrum of extreme precipitation

changes as logistically possible. At the commencement

of this project, only twomodel experiments (GT-rcm and

CW-rcm) had available the required three-dimensional

data and were thus used out of necessity. The thirdmodel

(CR-rcm) was chosen later, out of a slightly larger pool

of then available model experiments. CR-rcm was

selected in part to represent a wetter RCM projec-

tion, when compared to the more moderate GT-rcm

and relatively dry CW-rcm precipitation projections

(Fig. 2; Tables 2 and 3). Recent work suggests that

weighting or culling NARCCAP models based on skill

in representing key climatological features of a given

region may offer increased confidence in overall results

(e.g., Bukovsky and Mearns 2012), though this option

was not available for this study. Therefore, while three

model experiments selected from an already limited

NARCCAP experiment cannot capture the entire pa-

rameter space of possible regional climate change signals,

enhancing initial condition model diversity provides a

step toward sampling a fuller distribution of future cli-

mate possibilities.

While most NARCCAP models indicate a drying

trend in future summer mean precipitation for this re-

gion, the highest precipitation percentiles (i.e., greater

than the 99th percentile of daily rainfall as examined

here) can show a differing result (Alexander et al. 2013).

The three RCMs chosen for this study are compared to

the NARR (Mesinger et al. 2006) data (32-km grid

spacing) in order to compare RCM-produced extreme

events to the heaviest regional rainfall events as repre-

sented by NARR. The top 10 selected events from each

RCM historical period are compared with the top 10

historical events (from the NARR data period 1979–

present). The 10 event spatial average precipitation from

the top 10 events in the twentieth-century NARCCAP

simulations relative to the analogous NARR quantity

show that the GT-rcm and CR-rcm simulations tend to

have larger average precipitation values relative to the

NARR analysis, and CW-rcm tends to have smaller av-

erage values relative to NARR (Fig. 2; Tables 2 and 3).

The spatial structure and distribution of the RCM aver-

age precipitation also differ significantly from NARR,

with most of the model simulations showing a generally

more (grid) boxy structure with the maxima centered on

various parts of the target region. Such differences are

somewhat expected due in part to the coarser model

resolution relative to NARR. While a comparison to re-

analysis data ideally provides some insight into model

TABLE 1.WRFModel set-up and parameterization for downscaled

simulations.

Model version WRF (ARW) version 3.1.1

Duration 24 h; output frequency is 1 h

Grid 1.3-km grid spacing (within a 4-km outer

nest)

574 3 601 gridpoint domain (outer

domain 450 3 450)

28 vertical levels

Physics Explicit convection (no convective

parameterization)

WSM6 microphysics

YSU planetary boundary layer (PBL)

scheme

Noah land surface model; Monin–

Obukhov surface layer physics

Dudhia; Rapid Radiative Transfer Model

(RRTM) radiation physics

Initial and boundary

conditions

NARCCAP (Mearns et al. 2009); CT, CW,

and CR simulations. Boundary

conditions updated every 6 h.
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performance in the historical period [andAlexander et al.

(2013) show that NARR precipitation is closely matched

to the NARCCAP mean precipitation for both lighter

and heavier precipitation events], one must also consider

that NARR is higher resolution (32-km grid spacing) and

assimilates different data sources. Furthermore, Fig. 2a

averages only 10 observed (historical) events, which are

completely independent of the events projected by the

RCMs. The spatial structure of a given RCM’s past and

future precipitation are more similar to one another than

to that of other models or that of NARR, indicating that

each model’s preferred regional precipitation pattern is

reasonably sampled by 10 events. NARR may also have

difficulty representing large precipitation amounts in

mountainous terrain and has other known limitations and

errors that have been documented as well (e.g., Mesinger

et al. 2006; Bukovsky and Karoly 2007; West et al. 2007;

Dominguez et al. 2012; Hughes et al. 2012). Thus, the

comparison is offered here as a basic benchmark against

a proxy for observations, but deviations between NARR

and the RCM top 10 events not only reflect model bias in

pattern and magnitude but also the independence of the

events considered.

FIG. 2. (a) Average 24-h accumulated precipitation for the top 10 NARR events for the target region (mm). (b)–(g) As in (a), but for each

NARCCAP RCM past and future period, as labeled. (h)–(j) Difference fields for future 2 past top 10 event averages.

TABLE 2. Comparison of WRF, NARCCAP, and NARR 24-h

precipitation values (mm) averaged over all top 10 events for the

max 24-h precipitation value at a single grid point. Positive

changes/future increases (negative changes/future decreases)

shown with plus (minus) sign.

Avg max 24-h

precipitation (mm)

Past Future Change (%)

NARR 62.7 — —

GT-rcm 144 189 131.3

CW-rcm 86.7 60.4 230.3

CR-rcm 204.7 271.2 132.5

GT-wrf 125 207 165.6

CW-wrf 101 103 12.0

CR-wrf 100.7 80.1 220.5
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NARCCAP RCM simulations were also produced

using reanalysis-driven boundary conditions.While such

simulations can be useful for assessing model perfor-

mance compared to observations and to assess the efficacy

of theNARCCAPdownscaling simulation sequence, they

are not used explicitly here because reanalysis-driven

downscaled simulations (i) were not produced for all

three of the models that we utilize, (ii) do not reflect any

possible GCM-provided bias that would be introduced to

the corresponding future simulation, and (iii) are them-

selves notwellmatchedwith observations of warm-season

extreme precipitation, due in part to the challenges de-

scribed above (e.g., Wehner 2013). Therefore, references

herein to historical or past events do not connote ob-

served historical events (Mearns et al. 2009). Additional

NARCCAP RCM detail appears in Mearns et al. (2009)

and references therein (see also http://narccap.ucar.edu/

data/rcm-characteristics.html).

3. High-resolution downscaling results

To illustrate the increase in spatial detail gained from

downscaling theRCM50-km grid spacing data to 1.3-km

grid spacing, Fig. 3 compares the largest past and future

GT-rcm (i.e., GFDL time slice from NARCAPP) pre-

cipitation event with the respective downscaled GT-wrf

(i.e., GFDL time slice downscaled by WRF) counter-

part. Resolving both finer-scale terrain detail as well as

convective motions (both updrafts and downdrafts) ex-

plicitly allows the high-resolution simulations to resolve

precipitation in spatial detail that more closely mimics

observed precipitation patterns relative to the coarse

bull’s-eye types of features produced at the RCM scale.

The increase in resolution also affords improved rep-

resentation of the formation, organization, and move-

ment of organized convective systems (e.g., Bukovsky

et al. 2006; Pritchard et al. 2011), as suggested by the

propagation of the convective system from the point of

convective initiation over elevated terrain eastward to

the eastern plains of Colorado.

Because displaying individual images for each of the

60 simulated cases is impractical for publication, we in-

stead average fields of interest from the 10 downscaled

simulations for each past/future set of simulations driven

by the three RCMs. When high-resolution data for 10

separate events are averaged together, it is difficult to

gain a sense of the intensity of individual events (e.g.,

compare the intensity of the single events from the

GT-wrf simulation in Fig. 3 to the averages shown in

Figs. 4a,d); thus, plots of total precipitation for each

individual high-resolution simulation are provided in

the supplemental material (Figs. S1–S3).

It is clear from the individual event perspective that

the CR-wrf (i.e., CGCM3 1 RCM3 downscaled by

WRF) simulations (Fig. S3 in the supplemental mate-

rial) often do not produce precipitation amounts that

would be expected for extreme events. The discrepancy

between the large amount of precipitation produced by

the RCM for these events and the lack of precipitation

produced by the high-resolution downscaling exposes

a fundamental disconnect between precipitation gener-

ation in the RCM versus in the high-resolution down-

scaled simulations. Further analysis of the CR-rcm (i.e.,

CGCM31 RCM3 per NARCCAP) experiment reveals

that in many of the top 10 cases, this particular

RCM (the Regional Climate Model, version 3; Pal et al.

2007) induces persistent and unphysical upslope flow,

mostly likely in response to terrain-induced poorly

ventilated differential heating, resulting in large

‘‘gridpoint storms’’ (e.g., Zhang et al. 1988; Giorgi 1991;

Molinari and Dudek 1992; West et al. 2007; Chao 2012).

An example of this is illustrated in Fig. S4 of the sup-

plemental material; while a full description is beyond the

scope of this manuscript, it is important to note that the

CR-wrf simulations are strongly biased by the RCM

used to initialize them. Specifically, an RCM-generated

gridpoint storm (though note that the resulting pre-

cipitation often spans multiple grid points) will be

counted as one of the top 10 events to be downscaled,

but the downscaled simulation will not produce similar

amounts of precipitation since it is not susceptible to the

parameterization-induced weaknesses found in the

RCM. The simulations are still, however, included in

the ensuing analysis with the purposes of (i) inter-

comparing the extreme event environmental charac-

teristics of all three RCMs, (ii) disclosing a potential

error source that likely affects extreme precipitation

generation in other GCMs and RCMs (e.g., Chao 2012),

and (iii) divulging a potential limitation of this specific

downscaling method that should be considered by sim-

ilar regional-to-high-resolution downscaling efforts.

TABLE 3. As in Table 2, but for the domain-average precipitation

(over the 1.3-km inner WRF Model domain).

Avg domain-average

24-h precipitation

(mm)

Past Future Change (%)

NARR 10.4 — —

GT-rcm 8.3 11.2 134.9

CW-rcm 7.0 5.5 221.4

CR-rcm 5.4 6.3 116.7

GT-wrf 5.1 9.3 182.4

CW-wrf 6.1 4.0 234.4

CR-wrf 3.9 2.1 246.2
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a. Intermodel precipitation comparison

There are significant differences between the three

sets of high-resolution simulations, particularly between

the GT-wrf simulations that produce considerably more

precipitation on average than those by CW-wrf or CR-

wrf in both the past and future simulations (Fig. 4).

Relative to the average 24-h NARR precipitation for

the top 10 events for this region (Fig. 2a), both the CW-

wrf and the CR-wrf appear to simulate events with

generally weaker intensity than would be suggested by

the historical climatology. Though the precipitation

maximum produced by GT-wrf is better matched to that

of the NARR data in terms of absolute value (Fig. 2a),

the simulated maximum is smaller and located to the

southwest of the Front Range target region. Quantita-

tively, the NARR domain-averaged precipitation ex-

ceeds that of the high-resolution WRF simulations, but

the modeled precipitation has larger local maximum

precipitation values (Table 2). The maximum pre-

cipitation at the WRF (1.3 km) scale is expected to be

larger than that for either the NARR (32 km) or

NARCCAP (50 km) scales, making the decrease in

maximum precipitation between the GT and CR RCMs

and the high-resolution WRF simulations even more

striking. This would indicate that, for the cases shown

here, the RCMs are likely overestimating precipitation

at their grid scale. The NARR reference point is pro-

vided in Table 2 as a basic benchmark, again caveated by

the fact that (i) the difference in grid spacing between

FIG. 3. The 24-h accumulated precipitation (mm) for the top event from (a) GT-rcm (past), (b) GT-rcm (future),

(c) GT-wrf (past), and (d) GT-wrf (future).
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NARR (32 km) and the WRF downscaled experiments

(1.3 km) likely contributes to the discrepancy in maxi-

mum precipitation values and spatial distribution and

that (ii) the collection of 10 events (while representing

the most intense precipitation events contained by the

dataset) remains a relatively small sample size to be

considered climatology.

The average of the 10 GT-wrf past simulations yields

a 45-mm rainfall maximum over the higher terrain of

central Colorado (Fig. 4a). In contrast, the future

GT-wrf simulations produce three main precipitation

maxima that each exceed 45mm and span an eastward-

extended spatial region from the eastern edge of the

Rocky Mountains to the eastern plains of Colorado

(Fig. 4d). The average precipitation difference from the

past to the future across the two sets of 10 runs from

GT-wrf is clearly an increase from the target region,

eastward (Fig. 4g). The presence of three precipitation

maxima in the future average field suggests differences

in convective system organization and motion and il-

lustrates that the future event environments considered

here support larger rainfall amounts over the eastern part

of Colorado relative to the past top event environments.

The CW-wrf events are generally smaller both in

spatial extent and 24-h maximum precipitation values

(Fig. S2); therefore, the event averages are considerably

smaller relative to the GT-wrf simulations (cf. Figs.

4a,b). Similar to the GT-wrf simulations, the past high-

resolution runs tend to maximize precipitation over the

eastern edge of the Rocky Mountains, but in contrast to

FIG. 4. The 24-h accumulated precipitation average for (a) GT-wrf, (b) CW-wrf, and (c) CR-wrf top 10 past simulations. (d)–(f) As in

(a)–(c), but for top 10 future simulations. (g)–(i) Difference fields for future 2 past top 10 event averages.
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GT-wrf, precipitation totals decrease on average in the

future simulations (Figs. 4b,e). The pattern of the

CW-wrf precipitation difference field is almost reversed

from that seen in the GT-wrf precipitation difference

field (Figs. 4g,h), with future increases (decreases) in

event average precipitation in the eastern part of the

domain for GT-wrf (CW-wrf). As the CR-wrf experi-

ment produces few events with notable precipitation, av-

erage precipitation values are low in both the past and

future simulations (Figs. 4c,f,i). Because of the afore-

mentioned challenges demonstrated by CR-rcm, changes

indicated in its downscaled precipitation fields are of

limited practical significance.

Domain-averaged and gridpoint maximum pre-

cipitation values are given in Tables 2 and 3. Not only do

the future changes differ between the three sets of

downscaled simulations, the values also differ consid-

erably from the RCM-indicated values. If CR-wrf is

discounted because of its lack of intense precipitation in

most cases, then an increase in localized maxima is

noted in most of the GT-wrf and CW-wrf simulations.

While the increase in the CW-wrf event average local

maximum is negligible, it is important to note that rel-

atively strong localized maxima still occur in individual

simulations despite a decrease in the overall pre-

cipitation associated with the CW top future events. This

result may be particularly relevant for applications

sensitive to changes in maximum local precipitation

amounts. Note also that if we consider a hypothetical set

of 30-yr WRF simulations using 1.3-km grid spacing, it

may contain events in its top 10 that are not in the top 10

events identified using RCM data (as discussed in sec-

tion 2b). Therefore, the results in Tables 2 and 3 rep-

resent lower bounds with respect toWRF extreme event

precipitation totals.

b. Ingredients-based analysis

We now examine the three main ingredients for

warm-season convective storms in this region: moisture,

lift, and instability. The concept of ingredients-based

analysis for flash floods was developed and popularized

by Doswell et al. (1996), in which flash flood-producing

storms are broken down into a framework that some-

what separately considers the processes driving deep

moist convection: sufficient moisture, environmental

instability, and amechanism capable of lifting a parcel of

air to its level of free convection (LFC). We adopt this

framework in order to better understand how large-

scale environmental changes may be contributing to

changes in extreme precipitation projections and also to

explain differences between model results.

The following analysis documents the changes in in-

gredients at the initialization time of the high-resolution

WRF simulations. Changes in the larger-scale environ-

ment at WRF’s initial time are inherited directly from

the driving RCMs; therefore, the ingredients-based

discussion below is valid for both the RCM environ-

ments and the WRF simulations, at least at the initial

times.

1) MOISTURE

Precipitable water (PW) measures the total moisture

in the atmospheric water column. The average of the 10

initial event environments of all three model experi-

ments show an overall moistening from the past to the

future in the Front Range target region (Figs. 5h,i,j),

though the magnitude of the change itself and the ab-

solute moisture content varies considerably (Figs. 5b–g).

PW in the GT-wrf simulations increases from the past to

the future simulations in an area concentrated largely

over the eastern plains partially in response to stronger

southerly flow and enhanced moisture transport from

the Gulf of Mexico, but the pattern weakens over higher

terrain and even shows some drying tendencies in the

southwestern part of the domain (Fig. 5h). The CW-wrf

and CR-wrf events show a more uniform average

moistening of the atmospheric column (Figs. 5i,j), con-

sistent with general expectations of enhanced atmo-

spheric moistening due to global climate warming. In

terms of the absolute amount of moisture, GT-wrf has

the largest PW values overall, followed by CR-wrf, and

CW-wrf is the driest; CR-wrf appears to compare most

closely to reanalysis-derived values for PW values as-

sociated with extreme events in this region, even though

precipitation was poorly represented in this experiment

and downscaled simulations showed a decrease from the

past to future periods (Fig. 5a).

While PW provides insight into the total moisture

content, variations in moisture with height are critical to

storm structure, strength, and precipitation efficiency,

and there are considerable differences with respect to

moisture changes with height between the three driving

RCMs (Fig. 6). Within the Front Range target region,

the GT-wrf initial environments show slight (likely

negligible) drying at very low levels (i.e., the surface to

750 hPa) and moistening aloft, with a maximum dew-

point (Td) increase of 48C around 500 hPa (Fig. 6a).

CW-wrf shows relatively constant low-level moistening

(Td increase of 28C) from the surface to 600 hPa,

then sharp midlevel drying between 500 and 300 hPa

(Fig. 6b). Different from both GT-wrf and CW-wrf, the

CR-wrf initial environments show a nearly uniform level

of moistening (Td increase of approximately 28C) from
the surface to the tropopause (Fig. 6c).

While low-level drying (and upper-level warming,

discussed below) in the GT-wrf average environment
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may at first slightly hinder the initiation of convection,

large increases in midlevel moisture likely reduce dry air

entrainment, system weakening, and strong evaporative

downdrafts that can ultimately cut off the moisture

supply to a storm and render it short lived. Ample

midlevel moisture may thus be a key feature in allowing

the GT-wrf events to maintain greater strength over

a larger area and longer duration than in the CW-wrf or

CR-wrf simulations. Conversely, the midlevel dry air in

the CW-wrf average initial environment may contrib-

ute to the small size and more isolated nature of the

CW-wrf simulated events. Note that midlevel mixing of

dry air is a process that is generally not well represented

by convective parameterization (CP) schemes but is

more fully resolved at storm scale (e.g., Del Genio and

Wu 2010).

2) INSTABILITY

Thermal variations with height are also critical to the

production of ample buoyancy such that low-level air

can be lifted to the lifting condensation level (LCL) and

LFC. One measure of such instability is CAPE (e.g.,

Bluestein 1993); this quantity addresses surface-based

instability, and it is generally well suited for the present

analysis.

In a warmer and moister future climate, it is intuitive

that preconvective CAPE might increase (e.g., Williams

and Renno 1993; Ye et al. 1998; Van Klooster and

Roebber 2009). However, given that the magnitude of

warming and moistening may be greater at mid- or upper

levels relative to lower levels, it is possible that environ-

mental stability can increase via lapse-rate stabilization

FIG. 5. (a) Average PW (mm) for top 10 NARR events at 2100UTC. (b)–(d) As in (a), but for initialization times of all past simulations

for (b) GT-wrf, (c) CW-wrf, and (d) CR-wrf. (e)–(g) As in (b)–(d), but for future simulations. Difference (future2 past) of top 10 event

averages for (h) GT-wrf, (i) CW-wrf, and (j) CR-wrf.
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and thereby reduce the intensity of convection (e.g.,

Marsh et al. 2009;Hill andLackmann 2011).As the events

analyzed here were selected based on intense warm-

season rainfall (and thus presumably possessed significant

CAPE), it is not surprising that all of the average envi-

ronments show at least some areas of CAPE. 500 J kg21

(Fig. 7). However, both the changes and absolute mag-

nitudes show considerable spread: CW-wrf and CR-wrf

averages both show increases of CAPE from 200 to

800 J kg21 in the target region, but decreases inCAPEare

found in CR-wrf west of the continental divide, and large

decreases are found in GT-wrf throughout the central

part of the domain, particularly over higher terrain (Figs.

7h,i,j). Consistent with larger PW values, GT-wrf events

also have much higher overall CAPE values than either

CW-wrf or CR-wrf, andCR-wrf appears to comparemost

closely to NARR-analyzed CAPE values in similar his-

torical events (Fig. 7a).

Since CAPE integrates the effect of both temperature

and moisture variations with height, vertical soundings

and profiles are useful to diagnose what specifically

produces a given CAPE value. The low-level increases

in both temperature and moisture across the Front

Range target region in CW-wrf and CR-wrf environ-

ments result in CAPE increases (Figs. 6b,c). Note that

despite increases in CAPE, precipitation generally de-

creases for the events in these two experiments, under-

scoring the importance in resolving convection explicitly

rather than using a proxy such as CAPE to extrapolate

likely changes in precipitation. That is, a warmer and

moister environment does not guarantee stronger storms

when all factors are considered, and if an ingredient-

based approach is sought to understand changes to

extreme precipitation in coarse-resolution datasets, con-

sideration of alternative ingredients may be needed.

Conversely, CAPE decreases from the past to the future

across this particular area in the GT initial environments,

but more importantly to the ensuing convection, CAPE

remains the largest of the three experiments in terms of

absolute value and thus intense storms still develop.

3) FORCING FOR ASCENT

Even with ample moisture and sufficient instability,

some type of forcing for ascent is generally required for

precipitation to form. In the Colorado Front Range, this

forcing often comes in the form of simple upslope flow

(i.e., easterly winds impinge on the high terrain and moist

air is forced to rise). Differences in the low-level easterly

flow between the past and future top 10 GT cases show

an increase in future easterly (blue) upslope flow in the

Front Range target region and across eastern Colorado,

consistent with increased moisture advection and larger

future PW values as described above (Figs. 6, 8, and 9).

Conversely, both CW-wrf and CR-wrf show weakened

easterly flow across the target region for these cases; this

is likely a key determining factor in the smaller amounts

of precipitation in CW-wrf and CR-wrf over central and

eastern Colorado. In terms of easterly wind strength

compared to the reanalysis-based observed event com-

posite (Fig. 8a), the three RCMs display general agree-

ment with respect to the magnitude and distribution of

low-level flow, indicating that the upslope forcing for

ascent expected from observations is indeed captured in

each prestorm initial environment. CR has a stronger

easterly component over eastern Colorado relative to

GT and CW, which is consistent with the development

of unphysical gridpoint storms as previously described.

Future changes in the vertical profile of the east–west

component of the horizontal wind across the target re-

gion corroborate these results; Fig. 6 shows the average

FIG. 6. Vertical profile difference plot (future 2 past top 10 simulations) at model initial time of temperature (red line; 8C), dewpoint
(blue line; 8C), and the east–west wind component (black dashed line; kt, 1 kt’ 0.5m s21) for an area average over the FrontRangeTR for

(a) GT-wrf, (b) CW-wrf, and (c) CR-wrf. The y axis is pressure (hPa).
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increasing easterly flow from 800 to 300 hPa in the GT

initial environments from the past to the future runs.

Past to future decreases in easterly winds (and in some

cases, a transition to westerly downsloping flow) are

found in both CW and CR from the surface to midlevels.

While warm-season convection can be triggered

merely by upslope flow in the presence of ample mois-

ture and low-level instability, larger-scale forcing for

ascent is also of interest. Synoptic-scale forcing can

strengthen/accelerate more local lifting mechanisms

(e.g., Doswell 1987), and it is of additional interest here

because RCMs using 50-km grid spacing should be well

suited to resolve motions on synoptic scales. Surface

winds and 700-hPa upward vertical motion (w. 0) show

that both easterly low-level flow and larger-scale lift (w;

associated with synoptic-scale high pressure located

north of the Colorado Front Range, not shown) is most

prominent in the GT simulations, both past and present,

as well as in the CW past average environment (Fig. 9).

The synoptic surface circulation patterns as indicated by

the 10-m wind become diluted in the CW future average

environment, and also reveal marked differences be-

tween the CR initial environments and the other ex-

periments (Fig. 9).

4. Summary and discussion

a. Summary

This study explores the utility of a high-resolution

event-based model downscaling approach designed to

better understand how and why extreme precipitation

FIG. 7. (a) Average surface-based CAPE (J kg21) for top 10 NARR events at 2100 UTC. (b)–(d) As in (a), but for initialization times of

all past simulations for (b) GT-wrf, (c) CW-wrf, and (d) CR-wrf. (e)–(g) As in (b)–(d), but for future simulations. Difference (future 2
past) of top 10 event averages for (h) GT-wrf, (i) CW-wrf, and (j) CR-wrf.
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events may change in future climates, as well as identify

the strengths and limitations of the specific model

downscaling method. The region of interest for this

study is the Colorado Front Range, but the general

method may be applicable to other regions.

Three RCM projections for the periods 1970–2000

and 2040–70 are used to identify and initialize the top 10

largest precipitation events for further high-resolution

(1.3-km grid spacing) downscaling. Substantial differ-

ences exist between the three RCMs themselves in

terms of precipitation projections over the Colorado

Front Range, as well as between the RCMs and the

downscaled simulations with respect to the absolute

amounts of precipitation (both in the localized maxima

and domain-averaged quantities). The high-resolution

downscaled simulations suggest an increase in the

intensity of extreme precipitation according to one

model (GT-wrf), little change in another (CW-wrf), and

a decrease in the intensity of extreme events in the third

(CR-wrf). However, the collection of high-resolution

downscaled simulations suggest that even given a regional

climate model projection that shows an overall (i.e., spa-

tially averaged) decreasing intensity for extreme events,

localized maxima within individual extreme events can

remain as intense or increase.

Though this specific collection of high-resolution

simulations may not provide a definitive answer as to

whether extreme precipitation will change in this region,

the storm-scale information and ingredients-based ana-

lysis affords insight into how changes in large-scale cli-

mate parameters may in turn affect small-scale storms.

The three RCM projections used here all indicate an

FIG. 8. (a) Average u wind (east–west direction; m s21) for top 10 NARR events at 2100 UTC; (b)-(d) as in (a), but for initialization

times of all past simulations for (b) GT-wrf, (c) CW-wrf, and (d) CR-wrf. (e)–(g) As in (b)–(d), but for future simulations. Difference

(future 2 past) of top 10 event averages for (h) GT-wrf, (i) CW-wrf, and (j) CR-wrf.
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increase in total moisture (precipitable water), two of the

three (CW and CR) indicate an increase in CAPE, and

only one (GT) indicates an increase in upslope flow for

the extreme event environments examined. That the

environmental changes are often inconsistent with the

projected changes in rainfall demonstrates a key advan-

tage of thismethod over proxy-based approaches that use

larger-scale datasets to infer a connection between a sin-

gle environmental parameter and precipitation. This

potential drawback of proxy-based approaches (and an

advantage of the present method) is exemplified by the

increased future initial environment PW and CAPE in

CW-wrf and CR-wrf but (counter to what a proxy-based

framework would suggest) decreased future precipitation

in both experiments.

The storm-scale [horizontal grid spacing O(1 km)]

simulations presented here resolve multiscale inter-

actions of potentially competing effects that are gener-

ally not well represented by model parameterization

schemes (e.g., dry air entrainment diluting otherwise

strong updrafts as indicated in the CW-wrf experi-

ments), as well as allow the analysis of parameters that

are generally not provided in coarser-scale data such

as cloud-scale parameters and hydrometeor concen-

trations (e.g., Mahoney et al. 2012). We contend that

the physically consistent high-resolution downscaling

framework for intense precipitation events offers po-

tentially useful detail but also expands the range of

possible climate change impacts. While such an expan-

sion is often deemed valuable in research applications

[e.g., adding ‘‘good spread’’ to an ensemble of model

forecasts; Eckel and Mass (2005)], for decision makers

an expansion of climate change possibilities to consider

may present an additional challenge in deciding how to

most appropriately use high-resolution information.

Discrepancies between the high-resolution simula-

tions with explicit convection and the RCMs that utilize

cumulus parameterization prompt additional investi-

gation into the generation of extreme precipitation

by larger-scale regional and global climate models.

Despite beginning with approximately the same envi-

ronment, the RCM events and the WRF-downscaled

events show considerable disagreement in both intensity

and spatial distribution of precipitation (cf. Figs. 2 and

4). In particular, the vast discrepancy between the

RCM- and WRF-generated precipitation in the CR ex-

periment exposes a key limitation of using GCMs and

coarse-resolution RCMs to evaluate warm-season con-

vectively driven extreme precipitation events: coarse-

resolution models require parameterizations that are

FIG. 9. The 10-mwinds (barbs; kt) and 700-hPa vertical velocity (m s21; shaded as in the color bar) for (a)GT-wrf, (b) CW-wrf, and (c) CR-

wrf (past); and (d)–(f) as in (a)–(c), but for top 10 future event averages.
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often inherently incapable of realistically representing

extreme events. In the CR-wrf example, the lack of

heavy precipitation in many of the high-resolution

downscaled simulations served as the impetus to in-

vestigate further, revealing that the driving RCM pro-

duces unphysical gridpoint storms in this region resulting

from poorly parameterized mesoscale processes. The

specific outstanding challenges listed here, in addition to

further investigation into how to optimally initialize high-

resolution models from climate-scale datasets, remain

topics of ongoing work.

b. Discussion and future work

The transition to smaller and smaller climate model

grid spacings reveals new challenges in parameterizing

convection and the small-scale processes that impact

precipitation. When numerical weather models (e.g.,

higher-resolution models designed for the prediction of

mesoscale weather) faced an analogous transition to

higher model resolutions (e.g., Molinari and Dudek

1992), model errors were constantly scrutinized as part

of the routine analysis of weather forecasting. While

climate models are increasingly used for forecasting as

well, opportunities to evaluate specific events are less

common. As demonstrated here, detailed analysis of

model performance for specific events (and in particular

how key physical processes are represented in such

events) can be a powerful complement to more standard

climate model metrics that generally focus on longer-

term means and variability.

Much of the potential value of a high-resolution in-

dividual event-based ingredients-focused climate down-

scaling framework lies in its ability to offer physical

insight and test specific hypotheses. Additional applica-

tions in which such detail is ultimately useful is in driving

dynamical runoff/hydrology models and creating sce-

narios of extreme events under certain climate change

conditions (e.g., Barsugli et al. 2009; Porter et al. 2011;

Waage and Kaatz 2011). This style of analysis also pro-

vides a diagnosis of driving model performance with re-

spect to the skill of simulating extreme precipitation. To

have confidence in a givenmodel projection of the future,

it is necessary to have confidence in the ability of the

model to soundly represent critical physical processes.

DistinguishingRCMs that produce extreme precipitation

for physically plausible reasons from those that may

demonstrate unrealistic errors because of poor parame-

terization performance could potentially be used to jus-

tify culling or weighting models in multimodel ensembles

(e.g., Knutti et al. 2010; Mote et al. 2011; Bukovsky and

Mearns 2012).

Several aspects of this study prompt future work to

both improve this specific downscaling method and

identify complementary research approaches to more

fully explore changes in extreme precipitation for a given

region. In this study, we focus only on the heaviest pre-

cipitation events in the 30-yr NARCCAP time windows,

resulting in a limited sample size for statistical compari-

son. Therefore, the future changes in domain-average and

domain-maximum precipitation shown in Tables 2 and 3

would likely be different if we were to have a larger

sample size. The difficulty of pinning down a definitive

trend speaks not only to the inherent variability in ex-

treme events but also to the complex meteorology in this

region, where several ingredients may control the future

behavior of extreme precipitation. Nevertheless, a larger

sample size of cases would allow statistical significance

testing of trends, which would ideally include an evalua-

tion of storm structure changes via more sophisticated

metrics than those provided by local extreme value sta-

tistics. Climate change projections outside of those rep-

resented in the NARCCAP project (particularly the

subset of three NARCCAP experiments utilized here)

should also be sampled to the extent that resources per-

mit. Event selection should also be further developed to

include smaller-scale extreme events that are likely

omitted in the current case identification method (be-

cause of the reliance on coarse-resolution parameterized

model output). Work is ongoing to explore the utility of

using observed historical small-scale events in a pseudo–

global warming perturbation framework (e.g., Lackmann

2013) to address this question. Future efforts could choose

another parameter by which to select likely extreme event

environments (although preliminary work using easterly

wind speed convergence to identify upslope flow regimes

did not significantly affect the results).

Differences between theRCMevents and the observed

record also suggest the possibility that the driving RCMs

are producing events that are either too strong or are

producing extreme precipitation in environments that

might not support such precipitation in reality. Identify-

ing and addressing such issues can be convoluted though,

as events from RCM simulations based on GCM pro-

jections cannot be directly compared to observed events.

Finally, many previous studies demonstrate that model

skill in simulating past/present climate conditions is not

a predictor of skill for future projections and that this

issue is likely even more acute for the examination of

extreme precipitation in particular (e.g., Jun et al. 2008;

Santer et al. 2009; Knutti et al. 2010; Mote et al. 2011).

This study has not endeavored to select a best model but

rather to explore and evaluate consistency between a cli-

mate model’s projected environment and its projected

changes in extreme precipitation.

Despite the above considerations, judicious use of

high-resolution model downscaling can contribute to
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addressing the pressing question of the local effects of

climate change on extreme precipitation. The innovation

and refinement of research techniques that use large-

scale climate data to answer small-scale physical process-

based questions is both a challenge and an opportunity

that scientists and stakeholders in the weather, climate,

and water communities will increasingly share.
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