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Throughout 2014–2016, the California Current System (CCS) was characterized by large
and persistent sea surface temperature anomalies (SSTa), which were accompanied by
widespread ecological and socioeconomic consequences that have been documented
extensively in the scientific literature and in the popular press. This marine heatwave
and others have resulted in a heightened awareness of their potential impacts and
prompted questions about if and when they may be predictable. Here, we use output
from an ensemble of global climate forecast systems to document which aspects of
the 2014–2016 CCS heatwave were predictable and how forecast skill, or lack thereof,
relates to mechanisms driving the heatwave’s evolution. We focus on four prominent
SSTa changes within the 2014–2016 period: (i) the initial onset of anomalous warming
in early 2014, (ii) a second rapid SSTa increase in late 2014, (iii) a sharp reduction and
subsequent return of warm SSTa in mid-2015, and (iv) another anomalous warming
event in early 2016. Models exhibited clear forecast skill for the first and last of these
fluctuations, but not the two in the middle. Taken together with the state of knowledge
on the dominant forcing mechanisms of this heatwave, our results suggest that CCS
SSTa forecast skill derives from predictable evolution of pre-existing SSTa to the west
(as in early 2014) and the south (as in early 2016), while the inability of models to forecast
wind-driven SSTa in late 2014 and mid-2015 is consistent with the lack of a moderate
or strong El Niño or La Niña event preceding those periods. The multi-model mean
forecast consistently outperformed a damped persistence forecast, especially during
the period of largest SSTa, and skillful CCS forecasts were generally associated with
accurate representation of large-scale dynamics. Additionally, a large forecast ensemble
(85 members) indicated elevated probabilities for observed SSTa extremes even when

Frontiers in Marine Science | www.frontiersin.org 1 August 2019 | Volume 6 | Article 497



fmars-06-00497 August 6, 2019 Time: 17:18 # 2

Jacox et al. Predicting 2014–2016 CCS Marine Heatwave

ensemble mean forecasts exhibited limited skill. Our results suggest that different types
or aspects of marine heatwaves are more or less predictable depending on the forcing
mechanisms at play, and events that are consistent with predictable ocean responses
could inform ecosystem-based management of the ocean.

Keywords: heatwave, prediction, predictability, forecast, California Current System, Blob, El Niño

INTRODUCTION

In 2013, a region of highly anomalous warm ocean anomalies
(i.e., a marine heatwave), colloquially known as “the Blob,”
developed in the surface ocean of the northeast Pacific (Bond
et al., 2015). The California Current System (CCS) was
subsequently impacted by rapid anomalous warming in early
2014, and large positive sea surface temperature anomalies (SSTa)
persisted in the region at least through mid-2016 (Figure 1;
Gentemann et al., 2017). While marine heatwaves have been
defined in multiple ways, at least one study categorized this
one as a “severe” heatwave with a duration of over 700 days
(Hobday et al., 2018). This unprecedented physical anomaly
brought with it widespread ecological consequences including
dramatic range shifts of species at all trophic levels (Cavole et al.,
2016; Peterson et al., 2017; Sanford et al., 2019), a coastwide
outbreak of toxic algae (McCabe et al., 2016; Ryan et al., 2017)
and mass strandings of marine mammals and seabirds (Cavole
et al., 2016). As a result of these ecological changes, a number of
commercially important fisheries were closed either in response
to adverse conditions (Cavole et al., 2016; McCabe et al., 2016) or
in anticipation of them (Richerson et al., 2018). Similar impacts
have been documented for other marine heatwaves around the
globe (e.g., Mills et al., 2013; Wernberg et al., 2013; Oliver et al.,
2017), and increasing emphasis is being placed on the role of
these types of events in disrupting marine ecosystem functioning
(Smale et al., 2019).

While the CCS was persistently anomalously warm
throughout 2014–2016 (Figure 1), regional and broad-scale
anomalies during that period evolved in response to a suite
of forcing mechanisms (Amaya et al., 2016) including (i) the
“Ridiculously Resilient Ridge,” a blocking high pressure system
(Swain et al., 2014) that gave rise to the Blob by reducing wind-
driven mixing and wintertime cooling in the northeast Pacific
(Bond et al., 2015), (ii) the subsequent impact of o�shore warm
anomalies on the CCS, likely through both lateral advection
and anomalous atmospheric forcing (Zaba and Rudnick, 2016;
Chao et al., 2017; Jacox et al., 2018), (iii) evolution from the Blob
warming pattern characteristic of North Pacific Gyre Oscillation
(NPGO) variability to an arc-pattern warming resembling Pacific
Decadal Oscillation (PDO) variability, a transition that may have
been facilitated by tropical-extratropical teleconnections through
an El Niño event in 2014–2015 that was initially predicted
to be very strong but ultimately was weak (McPhaden, 2015;
Amaya et al., 2016; Di Lorenzo and Mantua, 2016), and (iv) the
2015–2016 El Niño event that was one of the strongest on record
based on equatorial Pacific SSTa, but whose CCS expression was
quite di�erent from that expected based on past strong El Niños
(Jacox et al., 2016; Frischknecht et al., 2017).

Advance warning of events like the 2014–2016 CCS heatwave,
whether it be for the onset of anomalous warming or its evolution
thereafter, would enable ocean managers and other stakeholders
to be proactive in their decision making. To that end, the
overarching aim of this paper is to determine what about this
heatwave was predictable, and why. Hu et al. (2017) examined
seasonal forecasts from the National Center for Environmental
Prediction’s Climate Forecast System (NCEP-CFSv2) to assess
predictions in the region of the Blob, centered on ⇠140�W, 45�N
(see November–December 2013 in Figure 1). They found little
forecast skill for the initiation of this extreme warm anomaly,
which was forced by atmospheric internal variability that is
inherently unpredictable. However, anomalous warming of the
CCS occurred following the establishment of the o�shore warm
anomaly, and so prediction of CCS anomalies was not necessarily
limited in the same way. It is conceivable that while the Blob was
not predictable, subsequent impacts on the CCS were; such is the
case for El Niño – Southern Oscillation (ENSO) events that once
developed in the tropics can impart predictability in the CCS for
the following months (Doi et al., 2015; Jacox et al., 2017).

Here, we explore seasonal forecasts from eight global climate
forecast systems that have contributed to the North American
Multi-Model Ensemble (NMME; Kirtman et al., 2014) and
assess their ability to predict di�erent phases of the 2014–
2016 CCS warm anomalies. We examine variability averaged
over the CCS domain as well as the spatial evolution of
forecast and observed SST anomalies in the northeast Pacific,
and link the success or failure of model forecasts to the
mechanisms responsible for the SSTa variability. Finally, we
combine individual ensemble members from each model to
create a large (85-member) forecast ensemble, which can indicate
the probability of extreme warm anomalies even when they are
largely missed by ensemble mean forecasts.

MATERIALS AND METHODS

Seasonal Forecasts
Seasonal SST forecasts are obtained from global coupled climate
models contributing to the NMME. We focus on eight models
whose SST forecasts are publicly available for a long re-forecast
period as well as for the recent years that are the focus of this
study (i.e., 1982–2016). The models are CMC1-CanCM3 and
CMC2-CanCM4 (Merryfield et al., 2013) from the Canadian
Meteorological Center (CMC), NCEP-CFSv2 (Saha et al., 2014)
from the National Center for Environmental Prediction (NCEP),
COLA-RSMAS-CCSM4 (Infanti and Kirtman, 2016) from the
National Center for Atmospheric Research (NCAR), GFDL-
CM2p1-aer04 (Delworth et al., 2006), GFDL-CM2p5-FLOR-A06
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FIGURE 1 | Observed evolution of northeast Pacific SST anomalies from July 2013 to June 2016. Anomalies are calculated relative to the 1982–2010 climatology
using the 0.25� OISSTv2 product. The CCS region of interest to this paper, extending along the North American west coast from 30 to 48�N and from the coast to
300 km offshore, is outlined in black.

(Vecchi et al., 2014), andGFDL-CM2p5-FLOR-B01 (Vecchi et al.,
2014) from the Geophysical Fluid Dynamics Laboratory (GFDL),
and NASA-GMAO-062012 (Vernieres et al., 2012) from the
National Aeronautics and Space Administration (NASA). For
each model, forecasts are initialized monthly and an ensemble
of forecasts is produced. For all models except CFSv2, forecasts
are initialized on the first day of the month and an ensemble
of 10–12 members is produced at each initialization time.
Individual ensemblemembers are generated by introducing small
perturbations to the initial conditions, which grow in time to
large di�erences due to the chaotic nature of the climate system
(Lorenz, 1963). For CFSv2, four ensemblemembers are initialized
every fifth day, for a total of 24 per month. For consistency
with other models, we use only 10 ensemble members from
CFSv2, the four initialized on the first of the month and the
last six initialized the previous month. Monthly average output
is saved for lead times from 0 (e.g., a January 1st forecast of
mean January conditions) to 11months, except for the CFSv2 and
NASA-GMAO models, which have forecasts available for lead
times up to 8 months.

Skill Evaluation
As global climate models have in some cases large SST biases,
especially in eastern boundary upwelling systems like the
CCS, forecasts must be bias corrected for comparison with
observations. Additionally, models drift from their initialized
state toward their preferred (biased) state over the course of a
forecast, so bias correction is initialization month- and lead time-
dependent. For each initialization month and lead time, forecast
SST anomaly (SSTa) is computed by removing the 1982–2010

forecast climatology, and observed SSTa is calculated similarly
by removing the 1982–2010 climatology from NOAA’s 0.25�

Optimum Interpolation SST, version 2 (OISSTv2; Reynolds et al.,
2007; Banzon et al., 2016). This method assumes that forecast
biases are stationary in time, which is an oversimplification
(Supplementary Figure 1; Kumar et al., 2012). However, there
is no established protocol for dealing with non-stationarity in
forecast biases. We discuss this issue more in Section “California
Current System SST Anomalies,” particularly with reference to
the NCEP-CFSv2 forecasts.

We evaluate SSTa forecasts with respect to observed
conditions in the CCS, which we defined as extending 30–
48�N and from the coast to 300 km o�shore, as well as
in the broader northeast Pacific (Figure 1). Past analyses of
NMME forecast SSTa (Stock et al., 2015; Hervieux et al.,
2017; Jacox et al., 2017) have relied on several skill metrics
for evaluation: the deterministic metrics anomaly correlation
coe�cient (ACC) and root mean square error (RMSE), and the
probabilistic Brier Score. In each case, skill scores have been
calculated based on interannual variability over a long (⇠30-
year) time series. Such analyses have demonstrated that NMME
forecasts have significant skill for SSTa in the CCS at lead
times of at least 5 months and up to 11 months depending
on initialization month. Furthermore, NMME SSTa forecasts
outperform persistence forecasts in the CCS, primarily due to
the ability of the model forecasts to capture anomalies associated
with moderate to strong ENSO events (Jacox et al., 2017). While
long-term skill assessments o�er a baseline evaluation of model
forecasts capabilities, here we aim to evaluate predictions for
individual fluctuations over a much shorter time period (3 years),
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so the same skill metrics are not appropriate. Instead, we focus
on the SSTa forecast error (forecast minus observed SSTa) to
evaluate predictions of mean CCS conditions and spatial anomaly
correlations to evaluate the ability of models to predict the spatial
evolution of SSTa more broadly in the northeast Pacific.

Persistence Forecasts
We use a “damped persistence” forecast as a baseline against
which to evaluate the skill of model forecasts. The damped
persistence forecast assumes that observed SSTa decays toward
zero over some characteristic timescale, and it is a more rigorous
baseline for forecast skill than the climatology (which has zero
skill for predicting anomalies) or a simple persistence forecast
(which unrealistically maintains anomalies in the absence of
additional forcing) (e.g., Mason and Mimmack, 2002). The
damped persistence forecast SSTa at lead t is calculated from
SSTa(t) = aSSTa(i), where SSTa(i) is the observed SSTa at forecast
initialization and a is the autocorrelation coe�cient of SSTa
at lag t.

RESULTS

California Current System SST
Anomalies
While warm SSTa generally persisted along the North American
coast from early 2014 through at least 2016, on monthly
timescales the CCS saw distinct periods of increasing and
decreasing SSTa. Models were able to forecast some of these
fluctuations with clear skill, while in other cases they performed
no better than a damped persistence forecast (Figure 2). All
models predicted increasing SSTa in late winter and early spring
2014, albeit this anomalous warming was more gradual in
forecasts than in observations. A warmer than average 2014
early summer was predicted by all models with a January
initialization, and the multi-model mean SSTa forecast for
summer 2014 fell halfway between the persistence forecast (0�C)
and the observed anomaly (0.8�C). However, a second pulse of
anomalous warming in late 2014, which increased observed SSTa
from 0.8 to 2�C, was absent from the January initialized forecasts.
In fact, even forecasts initialized in July – approximately 2months
before this second period of rapid SSTa increase – predicted SSTa
to decrease toward zero rather than increase. CCS temperatures
remained elevated throughout much of 2015, interrupted only
by a brief but strong cooling in May–June. This pattern was
missed by forecasts initialized in January 2015, which generally
predicted decreasing SSTa throughout the year following the
damped persistence forecast. Finally, 2016 was characterized by
yet another brief period of increased SSTa in spring followed
by cool and warm SSTa in summer and fall, respectively. The
spring 2016 warm period was captured with impressive fidelity by
model forecasts, with the January initialized multi-model mean
matching observations almost exactly through June (Figure 2),
although forecast skill dropped o� later in 2016.

The findings outlined above – that forecasts exhibited skill for
SSTa changes in early 2014 and early 2016, but not for mid-2014
through 2015 – generally hold true across models and lead times

(Figure 3). For longer leads (e.g., 8 months), skillful forecasts
of early 2014 anomalous warming led to improvements over a
damped persistence forecast throughout 2014, and in fact the
multi-model mean forecast outperformed a damped persistence
forecast for much of the study period. However, the most intense
warm anomalies in late 2014 were largely missed by all models
even at lead times of 2 months, as was the persistence of those
anomalies into 2015. In contrast, the evolution of the early 2016
warm period, with SSTa exceeding 1�C, was forecast with very
high skill even 8 months in advance (Figure 3). Forecasts from
individual models di�er quantitatively but exhibit skill during
the same time periods, consistent with findings for large marine
ecosystems around the U.S. and elsewhere (Stock et al., 2015;
Hervieux et al., 2017).

One model, NCEP-CFSv2, emerges as a potential outlier
with forecast SSTa that is in some cases much higher than
that seen in other models (Figure 2). However, interpretation
of this result is challenging for several reasons. First, CFSv2
anomalies are warmer than those of other models throughout
2013–2016, not just during the observed warm periods (e.g., see
8-month lead forecasts in Figure 3), suggesting an issue with the
bias correction. As mentioned earlier, anomalies are calculated
relative to a 1982–2010 climatology but in fact biases change
over time. The non-stationarity of CFSv2 biases was noted by
Kumar et al. (2012), in particular with regards to an apparent
shift to warmer biases around 1999. While this issue is not
unique to CFSv2 (all models have state-dependent biases), the
CFSv2 warm bias has increased relative to other models over
time, especially since ⇠2007 (Supplementary Figure 1). Second,
the CFS Reanalysis that is used to initialized CFSv2 forecasts
had a prominent tropical Atlantic cold bias that developed in
October 2013 and was addressed in March 2016. The cold
Atlantic bias resulted in a persistent El Niño-like state, favoring
warm anomalies in the northeast Pacific (NOAA/NCEP Climate
Prediction Center, 2015, 2016a,b).

Northeast Pacific Spatial SST Anomalies
and Forcing
To further explore and contextualize the CCS anomalies
described in the previous section, we turn our attention
to the spatial evolution of observed and forecast SSTa in
the broader northeast Pacific, taking the years 2014, 2015,
and 2016 in turn. We focus initially on the multi-model
mean forecast, as forecasts for individual models di�er
quantitatively but display similar structure. We discuss
observed anomalies and the ability of models to forecast
them here, and in the discussion we link these findings
to the mechanisms that may have imparted increased
predictability to early 2014 and early 2016 relative to
late 2014 and 2015.

In the observations, 2014 was characterized by an intense
o�shore warm anomaly evolving into an arc warming pattern
with concomitant increases in CCS SSTa (Figure 1). As we have
seen previously this anomalous 2014 warming occurred in two
stages, one in early 2014 that was also seen in model forecasts
and another in late summer/fall that was not. The early 2014
SSTa increase occurred by an expansion of the o�shore warm
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FIGURE 2 | Global climate forecasts for mean SSTa in the CCS, initialized in (top) January and (bottom) July of each year from 2013 to 2016. Thin dotted colored
lines are individual ensemble members for each model while solid colored lines are model means. For each model, anomalies are calculated relative to the lead time-
and initialization month-dependent climatology.

anomaly to the coast, which was forecast in the multi-model
mean (Figure 4), albeit with a lag of several months relative
to observations (May–June vs. March–April). Thus, while the
formation of the Blob itself was not predictable (Hu et al., 2017),
its subsequent influence on the CCS was somewhat predictable.

The SSTa increase of late 2014 had a very di�erent character
from that early in the year, as the spatial structure of northeast
Pacific SSTa transitioned from a North Pacific Gyre Oscillation
(NPGO)-like pattern with anomalies centered in the Gulf of
Alaska to a Pacific Decadal Oscillation (PDO)-like arc pattern
with warm anomalies along the North American coast and cold
anomalies in the gyre (Di Lorenzo andMantua, 2016). In contrast
to the early part of the year, late 2014 was not characterized
by clear forecast skill for the additional anomalous warming,
though forecast anomalies from earlier 2014 persisted and
provided model forecast skill superior to a damped persistence

forecast (Figure 2). Also notable in the spatial anomaly forecasts
is that forecast SSTa are muted relative to observations; in
the ensemble mean forecast biases from individual ensemble
members cancel each other, reducing the ensemble mean forecast
variance especially at longer leads (e.g., Doblas-Reyes et al., 2005).

In 2015, the CCS remained very warm with persistent SSTa
near 2�C, interrupted only by a brief cooling in May–June
that while dramatic in CCS time series (Figure 2) was a very
localized event in the northeast Pacific (Figure 5) driven by
an anomalously strong spring 2015 upwelling season (Peterson
et al., 2017). Spatial correlations for both model and persistence
forecasts were briefly reduced during this late spring/summer
cooling before returning to relatively high levels (r ⇡ 0.5),
supporting the notion that it was a brief interruption of a
persistent warm period rather than a shift to a new and
distinct warm event.
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FIGURE 3 | Global climate forecasts for SSTa in the CCS at multiple lead times. Forecasts are initialized monthly. Lines are as in Figure 2.

Finally, by late 2015 the equatorial Pacific was experiencing
by some metrics (e.g., NOAA’s Oceanic Niño Index) one of the
strongest El Niños on record. While its impact on the CCS
was not as strong as expected based on tropical Pacific SSTa
(Jacox et al., 2016), a moderate SSTa increase in spring 2016 was
evident (Figures 2, 6). Model forecasts for this period were highly

accurate, and much better than damped persistence, for both the
CCS averaged SSTa (Figure 2) and spatial SSTa (Figure 6).

In general, forecast errors for the mean CCS SSTa (Figure 2)
mirror spatial anomaly correlations computed over the northeast
Pacific (Figure 7). In other words, when forecast errors for the
CCS are small, the structure of anomalies in the broader northeast
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FIGURE 4 | (Top) Observed and (bottom) forecast SSTa for 2-month periods throughout 2014. Forecasts were initialized in January. Correlation coefficients in top
panels are for persistence forecasts, correlation coefficients in bottom panels are for NMME multi-model mean forecasts. The CCS region is outlined in black.

FIGURE 5 | As in this image, but for 2015.

FIGURE 6 | As in Figure 5, but for 2016.
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Pacific tends to also be skillfully forecast. Given that our CCS
region occupies a relatively small fraction of the northeast Pacific,
this result is not obvious. It suggests that when CCS forecasts
are skillful, their skill derives from accurate representation of the
large-scale dynamics.

A Large Ensemble of Forecasts
To this point we have focused our analysis on NMME multi-
model mean forecasts or mean forecasts for individual climate
models. Overall, ensemble mean forecasts outperformed damped
persistence forecasts in the 2013–2016 period, and during the
peak warm anomalies from mid-2014 to the end of 2015, 8-
month lead multi-model mean forecasts outperformed damped
persistence in 100% of months, with a substantially lower mean
forecast error (0.8 vs. 1.2�C). However, since extreme events
are by definition in the tails of probability distributions, large
ensembles (50–100 members) may be required to forecast them
(Doi et al., 2019). It is rare for a single modeling center to
produce such an ensemble, but through theNMMEwe can obtain
one. Combining ensemble members from each of the 8 models
included in this study, we have a total of 85 ensemblemembers for
each forecast initialization, which can be used to generate forecast
plumes for the focal years of this study (Figure 8).

While model mean forecasts often evolve similarly in
space and time (e.g., Supplementary Figure 2), individual
ensemble members from a single model can di�er dramatically
(Supplementary Figure 3) such that the large ensemble forecast
spread is regularly 3�C or more (Figure 8). While the multi-
model ensemble mean forecast and the damped persistence
forecast underestimated late 2014 and early 2015 SSTa by ⇠1.5
and 2�C, respectively, the observed extremes were still within
the ensemble spread at 8-month lead (Figure 9). Thus, this

heatwave was forecast as an unlikely event, but not an impossible
one. Furthermore, 8-month lead forecasts indicated elevated
potential for extreme SSTa starting in mid-2014. The percentage
of ensemble members forecasting SSTa greater than 2 standard
deviations above the climatology (SSTa �⇠1.4�C) rose from the
long term mean value of approximately 3% to over 10% by late
2014 and upwards of 30% for late 2015 – early 2016 (Figure 9).
The only other time in the past 35 years when this extreme
positive SSTa forecast probability exceeded 10%was in early 1998,
following the peak of one of the strongest El Niños on record.

DISCUSSION

Forcing Mechanisms and Predictability
of 2014–2016 Heatwave
In the previous section, we evaluated global climate forecast
system predictions of the evolving 2014–2016 CCS warm
anomalies. Here, we put those predictions, and their success
or failure, in the context of the mechanisms driving the
SST fluctuations.

Rapidly increasing SSTa in the CCS in 2014 appears to have
been driven by the evolution of pre-existing warm anomalies
o�shore toward the coast, consistent with a lagged response of
the CCS to Gulf of Alaska SSTa (Jacox et al., 2018). This period of
warming was forecast by models with some skill, though slightly
lagged and with reduced magnitude relative to observations.
Based on a heat budget analysis of a regional ocean model, Chao
et al. (2017) attributed the early 2014 upper ocean temperature
increase in the central CCS to a combination of anomalous
surface heat fluxes and oceanic influence from the west, and Zaba
and Rudnick (2016) found anomalous surface heat flux to be a

FIGURE 7 | Spatial anomaly correlation coefficients for January-initialized forecasts. At each lead time, anomaly correlation coefficients were calculated between
forecast and observed SSTa for the area plotted in Figure 5 (150–105�W, 20–65�N). Lines are as in Figure 2.
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FIGURE 8 | Forecast spread for January initialized forecasts of 2014, 2015,
and 2016. For each panel, a total of 85 individual runs (10–12 runs from each
of 8 models) are represented by box and whisker plots indicating the range
and quartiles for each forecast month.

dominant driver of anomalous warming in the southern CCS in
the first half of 2014. Thus, a plausible explanation for forecast
skill during this period is that the o�shore anomalies present
at initialization were conveyed to the CCS through the mean
currents (i.e., eastward advection of o�shore warm anomalies)
and/or winds (i.e., westerlies transmitting anomalous surface heat
fluxes after blowing over warm ocean anomalies upstream).

A second period of anomalous warming in late 2014 was not
captured in model forecasts. During this period, the northeast
Pacific SSTa pattern evolved from the “Blob” pattern with warm
anomalies centered on the Gulf of Alaska to an arc pattern
warming characteristic of the PDO. The positive PDO-like phase
is typically characterized by anomalous northward winds and
consequently reduced upwelling (or increased downwelling),
which has been implicated in the anomalous CCS warming

during this period (Zaba and Rudnick, 2016; Chao et al., 2017;
Jacox et al., 2018). However, wind-stress driven SST anomalies
along the North American west coast tend to be forecast skillfully
only when they are associated with moderate to strong ENSO
events (Doi et al., 2015; Jacox et al., 2017), and the lack of forecast
skill in late 2014 (Figures 2, 4) is consistent with the neutral or
weakly positive ENSO state.

Warm anomalies persisted through much of 2015 with a
brief but strong cooling in late spring/early summer due to
anomalously strong coastal upwelling (Peterson et al., 2017),
which was not predicted in model forecasts. Consistent with
regional upwelling being the dominant influence in this period,
a regional heat budget identified vertical entrainment as the
primary driver of SSTa fluctuations during 2015 (Chao et al.,
2017). Remote ocean influence from the developing 2015–2016
El Niño likely also influenced the CCS in fall 2015, especially in
the south (Frischknecht et al., 2017), but does not appear to have
generated any appreciable forecast skill. As for late-2014, themid-
2015 variability was driven primarily by wind stress anomalies
not associated with an ENSO event, so it is unsurprising that it
was not predicted in the global forecasts (Jacox et al., 2017).

After a reduction of SSTa in the last months of 2015, another
warm period in early 2016 was forecast with impressive skill.
This last SSTa increase has been attributed to the 2015–2016 El
Niño event via coastal waves and potentially anomalous poleward
advection from the south (Chao et al., 2017). Winds in winter
2015–2016 were anomalously upwelling favorable, in contrast
to the canonical El Niño response (Jacox et al., 2016), so the
atmospheric teleconnection associated with ENSO variability
does not appear to have imparted predictability in this case. The
fact that the predictable influence of the 2015–2016 El Niño
appears to have come through the oceanic pathway suggests
that global models contain some representation of ENSO-forced
coastal propagation even though they are too coarse to resolve
coastal waves and currents (Capotondi et al., 2005).

By analyzing the spatiotemporal evolution of SSTa in concert
with published findings on the forcing of these anomalies, we
have developed hypotheses for why di�erent phases of the 2014–
2016 CCS heatwave were or were not predictable. Our analysis
has focused on SST primarily for practical reasons, as the suite
of variables publicly available in NMME output for recent years
does not include the comprehensive diagnostics required for a full
heat budget. Further exploration of these hypotheses, using heat
budgets calculated from oceanic and atmospheric fluxes in model
forecasts, is needed.

Ensemble Forecasts of SST Extremes
Multi-model ensemble mean forecasts outperformed damped
persistence forecasts for much of the study period in terms of
both forecast error and spatial anomaly correlations. During the
most extreme warm anomalies in 2014 and 2015, model forecasts
were consistently better than damped persistence, which had
⇠50% higher mean forecast error. However, neither ensemble
mean forecasts nor damped persistence forecasts predicted SSTa
anywhere near those observed at their peak. We see two reasons
for this discrepancy: first, the ensemble spread for individual
forecasts tends to be quite large (Figure 8), such that bias
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FIGURE 9 | Monthly initialized 8-month lead forecasts are shown for each of 85 ensemble members taken from 8 models (small blue markers), the multi-model
ensemble mean (large blue markers), a damped persistence forecast (open black circles), and observations (filled black circles). The red line shows the percentage of
ensemble members with forecast SSTa greater than 2� (⇠1.39�C) for each forecast. The standard deviation (� ) was calculated from 1982 to 2017 observed SSTa
and is marked by a thin gray line.

cancelation in the ensemble mean produces much reduced
variance in forecasts relative to observations, especially at longer
lead times (e.g., Figures 4–6). This reduced variance does not
a�ect skill metrics based on correlation, but does impact the
forecast error. One potential remedy is to scale the ensemble
mean variance such that forecasts at each lead time maintain
the same variance as that in the observations or the zero-
lead forecasts (i.e., variance inflation; Doblas-Reyes et al., 2005).
Second, an ensemble mean forecast that captures the observed
magnitude of an extreme event requires that a large portion of
individual ensemble members agrees on the extreme forecast,
which in turn requires that its forcing be primarily deterministic
and that model forecasts accurately represent that deterministic
forcing. However, we know that internal variability can also
strongly influence seasonal forecasts, leading to a wide range of
forecast outcomes (Figures 8, 9 and Supplementary Figure 3).
Thus, a failed forecast could result either from unpredictable
intrinsic variability or from the inability of a model forecast
to capture a deterministic pathway (e.g., tropical-extratropical
teleconnections proposed by Di Lorenzo and Mantua (2016) for
the evolution of SSTa in 2015).

For both 2014 and 2016, the ratio of predictable components
(Scaife and Smith, 2018) was greater than 1 (1.28 and 1.90,
respectively), meaning that the correlation between the ensemble

mean forecast and observations (r = 0.71 and 0.63, respectively)
was stronger than the average correlation of the ensemble mean
with individual ensemblemembers. Forecasts for these years were
underconfident, as the ensemble mean forecast was better than
what would be expected from the low model signal-to-noise ratio
(Eade et al., 2014; Scaife and Smith, 2018). This is evidence of the
“signal-to-noise paradox,” previously documented for ensemble
climate predictions in the North Atlantic (Scaife and Smith,
2018). Scaife and Smith (2018) suggest that this underestimation
of the signal-to-noise ratio in climate predictions may result from
teleconnections, and their associated predictable signals, being
too weak in climate models. Errors in the model signal-to-noise
ratio can have a range of consequences that should be considered
in forecast skill assessment, and post-processing techniques have
been developed to correct for these errors (e.g., Eade et al., 2014).

Finally, rather than relying on ensemble mean forecasts to
capture extremes, one can leverage the statistics of a large
ensemble, which will contain members with low forecast error
and high spatial correlations even when the ensemble mean
predictions fail (Figures 7–9 and Supplementary Figures 2,
3). Model ensembles have been shown to improve probabilistic
skill scores relative to single model forecasts (Hagedorn et al.,
2005), including for warm/neutral/cool SSTa terciles along North
American coasts (Hervieux et al., 2017). Given that skillful
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SSTa forecasts in the CCS appear to correspond to accurate
representation of the broader-scale SSTa structure (i.e., low
forecast errors in the CCS are associated with high spatial
correlations in the northeast Pacific), one can speculate that
the more skillful ensemble members are also predicting the
mechanisms driving those anomaliesmore faithfully (i.e., they are
right for the right reasons). However, such a hypothesis needs to
be confirmed by comparing the heat budgets in successful and
failed forecasts.

Regional Downscaling of Ocean
Forecasts
One notable limitation of the climate forecast systems analyzed
herein is their coarse resolution and resultant inability to
resolve fine-scale ocean processes and features that are key to
the functioning of the CCS and other systems. As a result,
there are a number of ongoing e�orts to improve regional
forecasts through dynamical downscaling of global forecasts
(e.g., Siedlecki et al., 2016). In such a configuration, output
from global models such as those in the NMME are used
as surface and lateral boundary conditions to regional ocean
models that have 1–2 orders of magnitude higher resolution.
Downscaled models have the advantage of being able to
resolve important ocean dynamics that are sub-grid scale in
global models (e.g., coastal upwelling, currents, eddies, and
trapped waves). However, the downscaled model is ultimately
dependent on the global model to impart forecast skill
through surface or boundary forcing. For events where there
is forecast skill derived from a clear deterministic pathway
(e.g., surface fluxes and/or lateral advection in early 2014,
poleward-propagating coastal trapped waves and/or anomalous
advection in early 2016), a downscaled forecast or small
ensemble of downscaled forecasts will better represent the fine
scale impacts. On the other hand, for extreme events that
result from unpredictable internal variability and can only
be predicted in a probabilistic sense (e.g., wind driven SSTa
variability in late 2014 and 2015), a downscaled ensemble of
adequate size is currently computationally prohibitive and a
large ensemble of global forecasts is the more appropriate tool
(Doi et al., 2019).

CONCLUSION

An ongoing shift toward ecosystem-based management of
the oceans (Levin et al., 2009; McLeod and Leslie, 2009)
requires that information on the ocean state be accurate and
readily available. The need for this information is even more
pronounced in light of climate extremes that leave managers,
fishers, and other stakeholders scrambling to adapt to rapid
change. For one such extreme, the CCS marine heatwave of
2014–2016, we have outlined aspects of the ocean temperature
evolution that were predictable in a deterministic sense, and
others that were forecast with low probability in a large
ensemble of seasonal forecasts. Incorporating ocean forecasts
into management plans is a di�cult task, complicated by
inherent unpredictability in the climate system, an added layer

of uncertainty when translating physical changes to ecological
impacts, and questions surrounding the decision making process
(e.g., at what probability of an extreme event is a management
action initiated?). However, to the extent that skillful forecasts
of ocean conditions can improve decision making relative
to that possible with ocean monitoring alone (Payne et al.,
2017; Tommasi et al., 2017), our findings o�er hope for
more e�ective management when forecasted marine heatwaves
ultimately do transpire.
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