
Special Section

Choosing and Using Climate-Change Scenarios for
Ecological-Impact Assessments and Conservation
Decisions
AMY K. SNOVER,∗ ‡‡ NATHAN J. MANTUA,∗† JEREMY S. LITTELL,∗‡ MICHAEL A. ALEXANDER,§
MICHELLE M. MCCLURE,∗∗ AND JANET NYE††
∗Climate Impacts Group, University of Washington, Box 355674, Seattle, WA 98195, U.S.A.
†National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southwest Fisheries Science Center, 110
Shaffer Road, Santa Cruz, CA 95060, U.S.A.
‡Department of Interior Alaska Climate Science Center, U.S. Geological Survey, 4210 University Drive, Anchorage, AK 99508, U.S.A.
§NOAA, Earth System Research Laboratory, R/PSD1, 325 Broadway, Boulder, CO 80305-3328, U.S.A.
∗∗National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, 2725
Montlake Boulevard East, Seattle, WA 98112, U.S.A.
††School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, U.S.A.

Abstract: Increased concern over climate change is demonstrated by the many efforts to assess climate
effects and develop adaptation strategies. Scientists, resource managers, and decision makers are increasingly
expected to use climate information, but they struggle with its uncertainty. With the current proliferation of cli-
mate simulations and downscaling methods, scientifically credible strategies for selecting a subset for analysis
and decision making are needed. Drawing on a rich literature in climate science and impact assessment and on
experience working with natural resource scientists and decision makers, we devised guidelines for choosing
climate-change scenarios for ecological impact assessment that recognize irreducible uncertainty in climate
projections and address common misconceptions about this uncertainty. This approach involves identifying
primary local climate drivers by climate sensitivity of the biological system of interest; determining appropriate
sources of information for future changes in those drivers; considering how well processes controlling local
climate are spatially resolved; and selecting scenarios based on considering observed emission trends, relative
importance of natural climate variability, and risk tolerance and time horizon of the associated decision.
The most appropriate scenarios for a particular analysis will not necessarily be the most appropriate for
another due to differences in local climate drivers, biophysical linkages to climate, decision characteristics,
and how well a model simulates the climate parameters and processes of interest. Given these complexities,
we recommend interaction among climate scientists, natural and physical scientists, and decision makers
throughout the process of choosing and using climate-change scenarios for ecological impact assessment.
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Selección y Uso de Escenarios de Cambio Climático para Estudios de Impacto Ecológico y Decisiones de Conser-
vación

Resumen: El incremento en la preocupación por el cambio climático se ve demostrado por la cantidad de
esfuerzos para estudiar los efectos climáticos y desarrollar estrategias de adaptación. Cada vez se espera más
que los cient́ıficos, los administradores de recursos y los encargados de tomar decisiones usen la información
climática pero ellos tienen problemas con esta incertidumbre. Con la actual proliferación de simulaciones
climáticas y métodos con reducción de escala, se requieren estrategias cient́ıficamente créıbles para la se-
lección de un subconjunto de análisis y toma de decisiones. Al tomar de una literatura rica en ciencias
climáticas y el estudio del impacto y con la experiencia de trabajar con cient́ıficos de recursos naturales y
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encargados de la toma de decisiones, diseñamos guı́as para escoger escenarios de cambio climático para el
estudio del impacto ecológico que reconozcan la incertidumbre irreducible en las proyecciones climáticas y
se dirijan hacia malentendidos comunes sobre esta incertidumbre. Esta aproximación involucra identificar
conductores locales primarios de clima mediante la sensibilidad climática del sistema biológico de interés;
determinar fuentes apropiadas de información para cambios futuros en esos conductores; considerar que
tan bien resueltos espacialmente están los procesos que controlan el clima local; y elegir escenarios basados
en considerar las tendencias observadas de emisiones, la importancia relativa de la variabilidad natural del
clima y la tolerancia de riesgo y el horizonte de tiempo de la decisión asociada. Los escenarios más apropiados
para un análisis particular no serán necesariamente los más apropiados para otro debido a las diferencias en
los conductores locales del clima, la relación biof́ısica con el clima, las caracteŕısticas de la decisión y cómo el
modelo simula los parámetros del clima y los procesos de interés. Dadas estas complejidades, recomendamos
la interacción entre cient́ıficos del clima, cient́ıficos naturales y f́ısicos y los encargados de las tomas de
decisiones a lo largo del proceso de elección y usar escenarios de cambio climático para estudios de impacto
ecológico.

Palabras Clave: agua dulce, cambio climático, especies amenazadas, estudios de riesgo, marino

Introduction

As in other parts of the world, in the United States natural
resource management agencies are starting to prepare
for the effects of climate change. Requirements to do
so have been set forth in Presidential Executive Order
13514 (2010), reiterated within agencies (e.g., USDOI
2009; NOAA 2010; USFS 2010), and emphasized by re-
cent court decisions (e.g., Pacific Coast Federation of
Fishermen’s Associations v. Gutierrez). In response, sci-
entists and managers are beginning to use climate-change
projections in risk assessment and planning.

However, climate-change projections are inherently
uncertain due to the future evolution of factors forcing
climate change (e.g., greenhouse gas emissions), climate
model error, and natural variability. To account for these
uncertainties, climate projections are based on multiple
forcing scenarios (either emissions scenarios [Nakicen-
ovic et al. 2000; IPCC 2007] or representative concen-
tration pathways [Moss et al. 2010]), multiple climate
models (CMs), and multiple ensemble members (i.e., sim-
ulations with the same CM and emissions scenario but
different initial conditions). The result is a dizzying array
of climate-change simulations with a range of outcomes
(Knutti & Sedláček 2013), where even the direction of
change in key climate variables may be unclear. Down-
scaling global climate projections and simulating physical
and biological effects typically increases this uncertainty.

Uncertainty poses substantial difficulties for scientists
and managers seeking a defensible choice of climate-
change scenarios in publicly visible, potentially litigious,
decision-making contexts. We define scenarios as projec-
tions of future climate or climate-influenced environmen-
tal conditions at the scale of interest. Some managers are
experimenting with alternate strategies for coping with
uncertainty, such as formalized scenario-planning exer-
cises (Weeks et al. 2011), but legal standing for their use
in agency decision making is unclear. A more common
approach is to limit the range of outcomes considered

by attempting to evaluate and select, a priori, the “best”
of each scenario component necessary for impact assess-
ment (e.g., global CMs, emissions scenarios, downscal-
ing, models of intermediary effects) (Fig. 1) or to wait for
advances in climate science to provide better projections.

Despite the common desire of biologists, natural re-
source managers, planners, and policy makers to do so, it
is not possible to identify the best scenarios of change in
local climate drivers or the best individual scenario com-
ponents. There are, however, objective paths to choosing
climate scenarios for impact assessment. We synthesized
the literature that is relevant to this point and to other
common misconceptions about the accuracy and utility
of climate-change projections. We present both a struc-
tured approach and general guidelines for choosing and
using climate-change scenarios that recognize the irre-
ducible uncertainty of future climate and the need to
develop useful climate information for decision making.

Guide for Choosing and Using Climate Scenarios

Selecting scenarios for impact assessment requires identi-
fying the primary local- and large-scale climate drivers, de-
termining appropriate sources of information for future
scenarios of those drivers, and objectively identifying a
subset of scenarios of change in these drivers for analysis
(Table 1).

Step 1. Identify primary local environmental drivers

Too often, local climate-change impact assessment
starts with examination of global climate scenarios. In-
stead, we suggest starting with biology by developing a
conceptual model that links biological response to local
climate and using sensitivity analysis to determine the
most important pathways of climate effects.

A good conceptual model (Busch & Trexler 2003;
Margoluis et al. 2009) identifies the specific biophysical
linkages through which climate directly and indirectly
affects a species (distribution, abundance) or organism
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Figure 1. A common method of assessing the
consequences of climate change for natural systems is
a top-down impact assessment, which links, in turn,
projections of global climate, regional climate,
regional effects, biological effects, and responses.

(growth, survival, performance, mortality). It includes all
life stages, relevant habitats, ecosystem processes main-
taining and connecting those habitats, and heterogene-
ity in climate and ecological processes (e.g., Fig. 1 in
McClure et al. 2013 [this issue]). It may include explicit
linkages between climate and system response or implicit
linkages determined by observed correlations.

Ecological sensitivity to climate can be character-
ized via empirical analysis of biological response to cli-
matic drivers (e.g., Battin et al. 2007; Boughton & Pike
2013 [this issue]; Walters et al. 2013 [this issue]), es-
pecially at transition zones, where climate can limit
performance (Baker et al. 2007; Hazen et al. 2013),
and biological thresholds, where changes in local cli-
mate conditions cause nonlinear responses (e.g., stream-
temperature threshold for salmon mortality [McCullough
1999]). Such analyses are sensitive to choice of biological
response variable and require accounting for nonclimatic

Table 1. Process for selecting climate scenarios for ecological-impact
assessments.

1. Identify primary local climate-related environmental
drivers (climate drivers).
Develop a conceptual model linking biological

response to local climatic conditions.
Determine the most important climate effect

pathways and local climate drivers through
sensitivity analysis, expert judgment,
or other approaches.

2. Determine appropriate sources of information for
future scenarios of local climate drivers that consider
how well processes controlling local climate are
spatially resolved (Fig. 2).

3. Objectively select (a subset of) scenarios for use in
impact assessment based on whether climate-model
errors significantly affect model sensitivity to global
warming, effect of natural climate variability, time
horizon of associated decisions, observed emission
trends, and decision context and risk tolerance
(Table 2).

drivers of change, spatial heterogeneity, and temporal
autocorrelation (Brown et al. 2011; Hare et al. 2012).
Because the magnitude of biological response depends
on both system sensitivity to environmental change and
the magnitude of that change, the latter must also be
considered when identifying primary pathways of climate
effects.

For many biological systems and species, especially ma-
rine, limitations in data and process understanding pose
significant challenges (Brown et al. 2011). Where lack of
information precludes quantitative sensitivity analyses,
primary climate drivers can be identified using expert
judgment considering the possible magnitude of pro-
jected climate changes and associated habitat responses
and relative importance of affected life stages. For exam-
ple, the biological review team assessing the status and
extinction risk of 82 coral species found good informa-
tion on projected climate-change and general effects of
temperature, UV radiation, and changes in ocean pH in
tropical ecosystems (e.g., Hoegh-Guldberg et al. 2011)
but little to no species-specific information necessary for
determining extinction risk. They, therefore, assessed cli-
mate effects with expert opinion that relied on existing
knowledge of acidification and temperature effects on
coral families and genera and a descriptive model of im-
plications for coral mortality and reproduction (Brainard
et al. 2013 [this issue]).

Step 2. Determine appropriate sources of climate infor-
mation

The next step is to determine whether biological ef-
fects of climate change can be assessed with output taken
directly from CMs or whether downscaling or modeling
of intermediary effects is necessary (Fig. 2). Because each
analytical step can add uncertainty, relying on output
from as high up the chain toward CMs is preferred.
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Figure 2. Steps for determining appropriate source(s) of information for constructing climate change scenarios
for local climate drivers.

Step 2a: Determine whether climate model output be
used directly

Current CM experiments produce output that can be
used directly to develop scenarios of local environmen-
tal conditions. In addition to future air temperature and
precipitation, archived CM output includes relative and
absolute humidity, downward solar radiation, long-wave
radiation, near-surface wind speed and direction, evapo-
ration, sea-level pressure, land surface hydrology, upper
ocean and sea surface temperature (SST), salinity, sea
surface height, and sea-ice thickness, typically at monthly
time-steps from transient CM runs (i.e., runs driven by
time-evolving anthropogenic forcings). Output is avail-
able from the Program for Climate Model Diagnosis and
Intercomparison (Meehl et al. 2007).

Long-term means (>30-year averages) from CMs
should be compared with observations to determine
whether bias correction is necessary (Mote et al. 2011). In
the simplest bias-correction approach, the delta method,

the difference between modeled future and modeled
historical conditions is applied to the observational
record (e.g., monthly or seasonally). Hereinafter, we
use CM output to refer to both bias-corrected and
nonbias-corrected CM output.

Although bias correction is typically necessary, it is
not always sufficient. CM spatial resolution and abil-
ity to simulate controlling processes should also be
evaluated before output is applied in local impact as-
sessments. Many ecologically important climatic pro-
cesses are insufficiently resolved in recent CMs (typ-
ical horizontal resolution 100–250 km). For example,
simulated coastal water temperature and salinity are
typically biased in coastal upwelling zones where im-
portant physical processes operate at scales of a few
to tens of kilometers (Stock et al. 2010; King et al.
2011). Applicability of CM output can be evaluated by
examining the spatial correlation among observations
of the variable of interest across the scale resolved by
CMs. For instance, because observed air-temperature
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variations tend to be well correlated over many hundreds
of kilometers, biological effects related to changes in air
temperature can be assessed with (bias-corrected) CM
temperature projections.

Step 2b: Determine whether the local climate driver can
be adequately represented by variables produced by
CMs

Even if CMs do not appropriately simulate the vari-
able of interest, CM output can be useful when the local
climate driver is well correlated with variables the CM
simulates well. For instance, better projections of coastal
upwelling changes may be developed from well-resolved
CM projections of atmospheric sea-level pressure (e.g.,
Wang et al. 2010) than from direct CM simulation of up-
welling. Cross-scale relations were exploited to project
future changes in Atlantic croaker (Micropogonias undu-
latus) juvenile survival rates. Because survival was linked
to estuarine winter water temperatures controlled by sur-
face air temperature, bias-corrected CM air-temperature
projections for a region central to Atlantic croaker distri-
bution could be used to project croaker survival (Hare
et al. 2010).

Correlations between local system conditions and
larger-scale climate indices, such as the North Atlantic
Oscillation (NAO) or Pacific Decadal Oscillation (PDO)
indices, are frequently used to elucidate historical trends
and variations (Mantua et al. 1997) and sometimes to
project changes over the next few decades (Van Houtan
& Halley 2011). However, such relations may break down
in a nonstationary climate. For example, North Pacific
SST trends are expected to be driven largely by the
PDO pattern for the next few decades and by anthro-
pogenic greenhouse-gas forcing by the mid-21st century
(Overland & Wang 2007).

Step 2c: Determine whether downscaling is necessary

Biological impact assessments typically require climate
scenarios at a finer resolution than current CMs. Such
scenarios can be created by applying a climate-change
signal of coarse resolution to an observational record of
finer resolution or by downscaling the climate-change
signal itself to finer resolution. A common approach to
the former is the delta method (Fogarty et al. 2008; Hare
et al. 2010).

Downscaling may be necessary to increase the res-
olution of the climate-change signal in cases where
CMs cannot resolve complex topography or where lo-
cal climate is controlled by land and ocean interac-
tions with the atmosphere. In statistical downscaling
empirical relations between global CM output and finer-
scale conditions are employed. Approaches differ with
respect to data requirements, ability to capture ex-
tremes (Burger et al. 2012) on various timescales, de-
gree to which spatial and temporal variability are de-
rived from historical observations versus CM output, etc.

(Salathé et al. 2007; Maurer & Hidalgo 2008; Abatzoglou
& Brown 2011). In dynamical downscaling, a higher reso-
lution (approximately 10–50 km) regional climate model
(RCM) is nested within a global CM. Computational de-
mands are a limiting factor. Dynamically downscaled
products are available for many atmospheric and land-
surface climatic variables (e.g., North American Regional
Climate Change Assessment Program [http://www.
narccap.ucar.edu/data/data-tables.html]), for some CM-
RCM combinations, at a resolution of 50 km for most of
North America. Output from RCMs run at finer resolution
is available for some regions (e.g., Salathé et al. 2010).
RCM outputs must be bias corrected or statistically down-
scaled for many local impact-assessments (e.g., Wood
et al. 2004). For all methods, validation is difficult without
a high-density network of climate observations to match
the downscaled grid (Lundquist & Cayan 2007), mak-
ing marine applications especially challenging. Down-
scaled climate scenarios can provide a sense of false
realism; all remain subject to errors and uncertainty in
both the underlying large-scale CM projections and from
downscaling.

The choice of downscaling approach is problem de-
pendent. Close collaboration between biologists and cli-
mate scientists can be helpful in determining which meth-
ods are appropriate for a specific application. Although
statistically more complicated or computer-intensive
downscaling methods are sometimes associated with bet-
ter performance, simple methods can provide similar or
superior results (Fowler et al. 2007). When multiple fac-
tors affecting an ecological endpoint are important, a
dynamical downscaling approach that ensures physical
consistency among output variables may be more ap-
propriate. When information on the relation between
climate and ecological effects is limited or when ecosys-
tem response is driven by one factor that is relatively
insensitive to local effects, a simpler approach may be
preferable.

Step 2d. Determine whether models of intermediary ef-
fects are necessary

A model of intermediary effects may be required to
develop scenarios for scales and variables not simulated
by CMs. For example, scenarios of future coastal marine
habitat can be developed with coastal upwelling and es-
tuarine circulation models using as input winds simulated
by RCMs (e.g., Auad et al. 2006). In the complex topogra-
phy of the western United States, where local processes
control the terrestrial water cycle, statistical downscaling
and hydrologic modeling were combined to assess effects
of climate change on snowpack, which affects wolverine
(Gulo gulo) denning (McKelvey et al. 2011); on stream
flow and temperature, which affect trout habitat suit-
ability (Wenger et al. 2011); and on summer potential
and actual evapotranspiration, which affect wildfire oc-
currence and area burned (Littell & Gwozdz 2011). In
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each case, downscaled climate information from a CM
was necessary but not sufficient for projecting local ef-
fects of climate change. Evaluations of the ability of joint
climate-biologic response modeling to replicate observed
conditions can indicate the degree to which the cascade
of uncertainty, caused by linking multiple models, and
small errors in initial (climate) conditions lead to larger
errors in projections of biologic response (Littell et al.
2011).

If needed variables cannot be derived from CM output,
scenarios can be created with other information, such
as observed variations or historical conditions. For exam-
ple, Beer and Anderson (2011) bioenergetically modeled
effects of warming on juvenile steelhead (Oncorhynchus
mykiss) growth rates in a relatively cold and relatively
warm stream. Dettinger et al. (2011) developed a worst-
case winter-storm scenario for California from 19th cen-
tury historical records to support emergency prepared-
ness and planning.

Step 3. Select (a subset of) scenarios for analysis

Step 3a. Identify available scenarios

Having identified the components necessary for devel-
oping local climate change scenarios, one can identify
the group of potential scenarios available for analysis.
Although efforts to date have focused primarily on the
range of projections from multiple CMs, emissions sce-
narios, and ensemble members, more recent work is also
accounting for the use of multiple downscaling methods
and models of intermediary effects (Maurer et al. 2010;
Pierce et al. 2013).

Although perhaps it is desirable to use all existing sce-
narios in a multimodel impact assessment, this approach
is computationally intensive (e.g., Maurer et al. [2007],
where statistically downscaled projections from each
emissions-CM-ensemble combination drive a hydrologic
model). The IPCC’s AR4 assessment report includes 21
CMs, 6 emission scenarios, and 1–5 ensemble members
for each model and emissions combination (IPCC 2007).
The AR5 assessment report will have over 50 CMs, many
with multiple ensemble members (Taylor et al. 2012).
With the proliferation of scenarios, defensible strategies
for selecting a subset of scenarios for analysis remain
important.

Although there are many criteria for evaluating CMs,
including the ability to reproduce aspects of observed
climate (Walsh et al. 2008; Mote & Salathé 2010), past
agreement does not ensure reliable future prediction
(Knutti 2008) and model ranking varies by metric (Knutti
2010; Overland et al. 2011), variable, temporal and spatial
scale, and geographic location. There is little evidence
that screening CMs through hindcast performance leads
to substantially different mean projections than would
result from a random sample of 6 or more different CM
scenarios (Pierce et al. 2009; Knutti et al. 2010). Mote

et al. (2011) recommend that, rather than attempting
to cull CMs on the basis of model robustness, analysts
should use as many future scenarios as possible and avoid
overweighting CMs with multiple ensemble members.
However, one might consider eliminating CMs that fail to
reproduce defining aspects of the system (e.g., McAfee
et al. 2011) or that have errors that affect model sensitiv-
ity to greenhouse forcing. In their evaluation of climate
effects on cusk (Brosme brosme), Hare et al. (2012) elim-
inated a CM that simulated ice too far south (in the Gulf of
Maine) that would have exhibited unrealistic sensitivity
to global warming there.

The importance of using multiple ensemble members
depends on the likely influence of natural variability. For
some variables, such as SST in much of the tropics, the an-
thropogenic trend (signal) is large relative to the natural
variability (noise). In contrast, the climate-change signal
in midlatitude precipitation is difficult to distinguish from
natural variability until at least the 2060s (Deser et al.
2012a, 2012b). The signal-to-noise ratio can be estimated
by the range of changes projected by multiple ensemble
members. Where this is low, natural variability is likely
to dominate changes projected by an individual ensem-
ble member, and multiple ensemble members should be
examined. For high signal-to-noise ratios, this is less im-
portant. A common practice for enhancing the signal-to-
noise ratio is creating 30- to 50-year means of CM output.

Step 3b. Consider limiting scenarios based on emission-
scenario characteristics

Depending on the time horizon of analysis, it may be
possible to reduce the number of scenarios analyzed by
including fewer emissions scenarios. For climate change
over the next few decades the choice of emissions sce-
nario is largely irrelevant. Because the projected increase
in global temperature until approximately 2050 largely
reflects past emissions, there is little difference across
emissions scenarios before then. For later in the century,
emission scenarios could be prioritized by the estimated
likelihood that they represent actual future emissions. Re-
cent (since 2006) trends in emissions are near the high
end of emissions scenarios in IPCC AR4 (Peters et al.
2012). These observations, the locked-in emissions from
the existing energy system, and the lack of substantial
international commitment to reducing emissions, make
achieving low-end scenarios (e.g., B1) increasingly un-
likely (MIT 2012). Walters et al. 2013 (this issue) deem
the higher of the available emissions scenarios more plau-
sible (A1B vs. B1), whereas Brainard et al. (2013) use a
range of emissions scenarios in part because they did
not make assumptions about future technology or policy
developments.

Step 3c. Select a scenario subset based on decision
context
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Table 2. Climate-change scenario selection criteria related to risk tolerance of associated management decisions.

Decision characteristic Implication for analysis Note

Risk averse (e.g., management
of endangered species to
avoid extinction)

Choose climate scenarios indicating the
largest negative impacts or examine only
climate scenarios on the basis of
probable emissions scenarios.

Because worst case is drawn from ensemble
of opportunity, not the real-world
situation, recognize that actual effects
may be more severe than projected.

Risk tolerant (e.g., plan for best
case, adjust management if
necessary)

Depending on actual level of risk tolerance,
choose the climate scenario that
indicates the best case or
middle-of-the-road projections.

For effects sensitive to interannual
variability, select a specific individual
scenario rather than an average of
multiple scenarios or choose a method
for developing scenarios that preserves
this variability (e.g., delta method, some
downscaling methods).

Risk managing (e.g., develop
strategies robust to future
uncertainty by planning for a
range of possible outcomes)

Select scenarios that represent the full
range of existing projections, including 2
or more scenarios that indicate high- and
low-end changes in local climate drivers.

The range of plausible outcomes may be
larger than scenarios indicate due to the
possibility of a more extreme worst-case
scenario.

Consider using an even number of
scenarios to preclude the common
tendency of users to assume the middle
scenario is most probable.

The climate scenarios under consideration can be nar-
rowed according to whether the decision making is risk
averse, risk tolerant, or intended to develop robust strate-
gies across risks (Table 2). Selecting scenarios in this
way requires information about the direction and relative
magnitude of biological effects across available scenarios,
often qualitatively estimated based on the relative mag-
nitude of projected change for primary climate drivers.
In a risk-averse context, such as ESA listing decisions
(McClure et al. 2013 [this issue]), in which the objective
is to avoid worst-case outcomes, it would be important to
identify and analyze the scenarios indicating the largest
negative effects for the system of interest. For analyses
to support a risk-tolerant approach to resource manage-
ment, the best-case scenario, the central scenario, or the
scenario (or delta method) average may be appropriate
depending on actual levels of risk tolerance and ability
to adjust management approaches in response to unan-
ticipated conditions. (Because averaging smooths CM in-
terannual variability when effects are sensitive to inter-
annual variability, basing the scenario on a specific CM
run or delta-method perturbation of historical time series
would be more appropriate than using the multimodel
average.)

In the face of an uncertain future, resource managers
are increasingly encouraged to manage risk by developing
conservation strategies that are robust to many condi-
tions. Boughton and Pike (2013 [this issue]) found that
restoring natural floodplain processes is a strong strat-
egy for steelhead conservation, given multiple climate
scenarios. Supporting this decision-making approach re-
quires selecting scenarios that represent the full range of
existing projections (e.g., ≥2 bracketing scenarios that
represent high- and low-end changes in primary climate
drivers [Littell et al. 2011; McKelvey et al. 2011; Wenger
et al. 2011]), although the model that projects the most

change in one region or variable may show little or no
changes for another. Providing an even number of scenar-
ios helps preclude the common tendency of policy mak-
ers to choose the middle scenario under the assumption
it is most likely. Providing projections for only the worst-
and best-case scenarios reduces computational time and
elicits a more thoughtful response.

Although the least change scenarios seem well
founded, the largest change scenario in CM archives
does not necessarily represent the largest plausible future
change. The climate system could be more sensitive to
increased greenhouse gases (Annan & Hargreaves 2006;
Roe & Armour 2011), future emissions could be greater
than in any of the emissions scenarios, and unforeseen cli-
mate extremes from natural variability are also possible.
Decision makers should be keenly aware that managing
for the largest change defined by currently available sce-
narios may not be sufficient to guarantee resilience.

Climate scientists carefully distinguish between cli-
mate projections, derived from scenarios of future
changes in climate forcings, and climate predictions
(or forecasts), which attempt to simulate the actual
climate state forward in time. In contrast to previous
IPCC simulations, the AR5 assessment includes climate-
prediction experiments (i.e., decadal forecasts that be-
gin with observed initial conditions). However, these
predictions have limited accuracy, beyond their abil-
ity to capture the climate-change signal, because of
errors in model physics and because chaotic interac-
tions cause minor differences in initial conditions to
increase over time and result in forecasts that diverge
widely from nature and each other (Pohlmann et al.
2009; Solomon et al. 2011). Despite these difficulties,
predictions are robust for northern Atlantic Ocean tem-
peratures for approximately 10 years (Oldenborgh et
al. 2012; Yang et al. 2013). Overall, the expected
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Table 3. Common misconceptions about the utility of climate scenarios for ecological-impact assessments and decision making, implications for
scenario selection and use, and links to guidelines for scenario selection.

Misconception Reality∗

Pessimism about climate-change scenarios
Climate models (CMs) do not produce output

variables relevant for determining ecological
responses.

CMs simulate a large variety of variables, including many appropriate for direct
use in ecological impact assessment (step 2a).

Because CMs are accurate only at continental
spatial scales, CM output is unsuitable for
projecting regional or local changes and
effects.

There are a variety of ways in which the robust output of CMs can be used to
drive local biological assessments, depending on the spatial scale of
controlling processes (step 2 and Fig. 2).

A single CM simulates all variables equally well
or poorly for all locations and time steps.

Accuracy of CM simulations differs significantly by variable, temporal and spatial
scale, and geographic region. This diversity must be considered when
evaluating CM output for use in local impact assessment (step 2).

Because the projected direction of change in
important variables is not the same among
CMs, CM output cannot usefully inform
decision making.

Despite directional uncertainty in CM projections of some variables, robust
scenarios of future conditions can be developed when biological effects are
dominated by changes in other better-understood variables. In the western
United States, for example, spring snowpack important for wolverine
reproductive success is projected to decrease in all future scenarios as a result
of projected warming, despite significant uncertainty in future precipitation
(McKelvey et al. 2010) (step 1).

The cascade of uncertainty, caused by linking
multiple models, combined with the
typically large range in climate-change
projections means that projected biological
effects are too uncertain to be useful.

Evaluations of the ability of joint climatic-biological response modeling to
replicate observed conditions can be used to evaluate the degree to which
small errors in initial climate conditions lead to larger errors in projections of
biological response (Littell et al. 2011).

Every time a new set of climate-change
scenarios is released (e.g., by the
Intergovernmental Panel on Climate Change
(IPCC), impact assessments must be
completely redone.

If the assumed linkages among changes in global climate, local climate drivers,
and biological effects are clearly articulated, and the ranges of changes
projected for local climate drivers identified for the current scenario set, new
global climate scenarios can be evaluated for the degree to which they would
alter that range and therefore for the necessity of updating decisions
associated with projected biological effects of climate change.

Optimism about climate-change scenarios
Climate-change scenarios are climate

predictions.
Climate scientists carefully distinguish between climate projections, which are

based on scenarios of future changes in climate forcings, and predictions (or
forecasts), which attempt to simulate the actual climate state forward in time.
Although the IPCC’s 5th assessment report (AR5) will include results of
climate-prediction experiments, the expected divergence of these decadal
climate forecasts suggests the continued importance of evaluating a range of
possible futures.

Climate scientists can identify which
scenarios are best or most likely.

Irreducible uncertainty about future greenhouse gas emissions, the fact that there
is no single most reliable CM, and the confounding effect of natural variability
mean it is impossible to determine the best, or most likely, climate-change
scenario. The choice of the “best” scenario depends on the characteristics of
the biological system of interest and the associated decision context (Table 1).

Climate-change scenarios define the range of
plausible foreseeable outcomes.

Although scenarios indicating the least change seem well founded, the largest
change scenario in CM archives does not necessarily represent the largest
plausible future change. Managing for the worst case as identified by currently
available scenarios may not be sufficient to guarantee resilience, and this
should be clearly communicated to decision makers (step 3c).

Climate-change scenarios with higher
resolution are necessary, possible, and will
improve ability to project biological effects.

Not all aspects of the climate are simulated more accurately with higher
resolution (e.g., Stock et al. 2010; Delworth et al. 2012). Development of
higher resolution scenarios is limited by fine-scale data for validation of
downscaled scenarios (Lundquist & Cayan 2007), especially in oceanic,
aquatic, and mountainous environments, where much resource management
is focused. Uncertainty regarding future climate changes is often not the
primary factor limiting projections of future biological change (step 1).

Uncertainties associated with climate-change
scenarios will decrease in the near term,
making them more useful for biological
assessments.

The IPCC AR5 is expected to increase uncertainty in estimates of climate change
due to the increased complexity of current CMs (Knutti & Sedláček 2013).
This suggests the need to identify climate-change scenarios that appropriately
represent the range of projected outcomes (step 3) and improve
understanding of biological linkages to climate so that ecological impact
assessments can appropriately use the information provided by CMs (step 1).

∗Indicated steps refer to those in the guide for choosing and using scenarios, above.
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divergence of these decadal climate forecasts suggests the
continued importance of evaluating a range of possible
futures.

Discussion

Our structured approach to choosing a salient and de-
fensible subset of climate-change scenarios addresses a
number of common (in our experience) misconceptions
among practitioners regarding the utility of climate sce-
narios for decision making (Table 3). Our approach uses
a bottom-up assessment of the climate sensitivity of the
biological and resource management system to identify
scenarios for use in the typical (top-down) impact assess-
ment (Fig. 1) (Root & Schneider 1995). Despite direc-
tional uncertainty in some CM projections, robust sce-
narios of future conditions can be developed when bio-
logical effects are dominated by changes in other, better
understood, variables.

Scenarios selected for ecological impact assessment
should appropriately represent the range of projected
conditions given the specific decision context for the
analysis. Whether multiple emissions scenarios and en-
semble members are considered (and if so, which ones)
depends on the time horizon of analysis and the im-
portance of natural variability. Our approach, which is
similar to that used for assessing climate risks to water
resources (Brown & Wilby 2012), demonstrates that the
most appropriate scenarios for one impact assessment
will not necessarily be the best for another because local
climate drivers, biophysical linkages to climate, and deci-
sion characteristics may differ. However, the implications
of new global climate scenarios for existing impact assess-
ments can be rapidly evaluated based on how much they
alter the range of projected changes or the magnitude of
the relevant best- or worst-case scenario.

Developing a better understanding of the implications
of climate change for biological systems, and for decision
making, requires improved understanding of local bio-
logical linkages to climate, continued improvements in
climate science, and better bridging of the gap between
the climate and biological science communities. The lack
of sufficiently detailed information on climate change is
rarely the only, and seldom the most important, hurdle
to assessing effects and implementing response strategies
(Dessai et al. 2009). Predicting climate effects on ecosys-
tems is as much of a challenge as predicting climate.
Limited understanding of physical controls on biological
systems typically results in even larger uncertainties in
ecosystem effects than do uncertainties in future climate
(Schindler et al. 2008). Clear identification of climate-
information needs of the biological-science community,
based on understanding of leading factors that affect local
biological change, would help the climate-science com-
munity better align development, evaluation, and deliv-

ery of climate scenarios in support of ecological impact
assessment and resource management efforts. Increased
collaboration among climate scientists, biological scien-
tists, and resource managers would advance the develop-
ment of ecological impact assessments that reflect state-
of-the-art understanding of both biological systems and
climatic processes.
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