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Abstract. We present the development and evaluation of
MOM6-COBALT-NWA12 version 1.0, a 1/12◦ model of
ocean dynamics and biogeochemistry in the northwest At-
lantic Ocean. This model is built using the new regional ca-
pabilities in the MOM6 ocean model and is coupled with
the Carbon, Ocean Biogeochemistry and Lower Trophics
(COBALT) biogeochemical model and Sea Ice Simulator
version-2 (SIS2) sea ice model. Our goal was to develop
a model to provide information to support living-marine-
resource applications across management time horizons from
seasons to decades. To do this, we struck a balance between
a broad, coastwide domain to simulate basin-scale variabil-
ity and capture cross-boundary issues expected under cli-
mate change; a high enough spatial resolution to accurately

simulate features like the Gulf Stream separation and advec-
tion of water masses through finer-scale coastal features; and
the computational economy required to run the long simula-
tions of multiple ensemble members that are needed to quan-
tify prediction uncertainties and produce actionable informa-
tion. We assess whether MOM6-COBALT-NWA12 is capa-
ble of supporting the intended applications by evaluating the
model with three categories of metrics: basin-wide indicators
of the model’s performance, indicators of coastal ecosystem
variability and the regional ocean features that drive it, and
model run times and computational efficiency. Overall, both
the basin-wide and the regional ecosystem-relevant indica-
tors are simulated well by the model. Where notable model
biases and errors are present in both types of indicator, they
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are mainly consistent with the challenges of accurately sim-
ulating the Gulf Stream separation, path, and variability: for
example, the coastal ocean and shelf north of Cape Hatteras
are too warm and salty and have minor biogeochemical bi-
ases. During model development, we identified a few model
parameters that exerted a notable influence on the model so-
lution, including the horizontal viscosity, mixed-layer restrat-
ification, and tidal self-attraction and loading, which we dis-
cuss briefly. The computational performance of the model
is adequate to support running numerous long simulations,
even with the inclusion of coupled biogeochemistry with 40
additional tracers. Overall, these results show that this first
version of a regional MOM6 model for the northwest At-
lantic Ocean is capable of efficiently and accurately simulat-
ing historical basin-wide and regional mean conditions and
variability, laying the groundwork for future studies to ana-
lyze this variability in detail, develop and improve param-
eterizations and model components to better capture local
ocean features, and develop predictions and projections of
future conditions to support living-marine-resource applica-
tions across timescales.

1 Introduction

Over the last few decades, the northwest Atlantic Ocean has
experienced prominent variability and sharp trends driven
by climate change and other anthropogenic factors, shift-
ing currents, and basin-scale modes of climate variability.
Sea surface temperatures in the Gulf of Maine and Sco-
tian Shelf and slope regions, located within the Northeast
US Large Marine Ecosystem (LME), warmed faster than
the vast majority of the global ocean in the last 2 decades
(Pershing et al., 2015; Seidov et al., 2021). In addition to
being driven by a warming atmosphere caused by increas-
ing greenhouse gas concentrations, some of this warming
occurred abruptly following shifts in the Gulf Stream path
(Friedland et al., 2020a, b). The destabilization point of the
Gulf Stream has recently moved westward, closer to where
it separates from the continental shelf (Andres, 2016), and
more frequent intrusions of warm and saline water onto the
shelf (Gawarkiewicz et al., 2022) and eddy shedding (Gan-
gopadhyay et al., 2019, 2020) have been observed. North-
ward shifts of the Gulf Stream have cut off the cool, south-
ward Labrador Current and amplified warming in the region
(Brickman et al., 2018; Gonçalves Neto et al., 2021; Sei-
dov et al., 2021), although some studies have found contrast-
ing long-term trends in the latitudinal position of the Gulf
Stream (Wang et al., 2022). Sea surface temperatures have
also been observed to be warming faster than the global aver-
age in the Gulf of Mexico (Wang et al., 2023) and Caribbean
Sea (Glenn et al., 2015). Rising temperatures and changes
in ocean dynamics have contributed to a rapid increase in

sea level and coastal flooding risk along most of the US East
Coast (Ezer and Atkinson, 2014).

Basin-scale modes of climate variability have also con-
tributed to some of the recent variability in the north-
west Atlantic Ocean, although the precise connections are
sometimes tenuous. The Atlantic Multidecadal Variability
(AMV), or Atlantic Multidecadal Oscillation (AMO), has
recently been in a positive phase that is associated with
basin-scale warming (Ting et al., 2009). Recent weakening
Atlantic Meridional Overturning Circulation has amplified
warming along the US East Coast and cooled the subpolar
gyre (Caesar et al., 2018; Jackson et al., 2022). Fluctuations
in the North Atlantic Oscillation (NAO) have been linked to
changes in the Labrador Current and Gulf Stream and down-
stream variability in temperature and salinity in the Northeast
US LME between approximately 1 and 4 years later (Grod-
sky et al., 2017; Mountain, 2012; Xu et al., 2015). Remote
climate teleconnections have also been identified, including
a link between the Pacific Decadal Oscillation (PDO) and sea
surface temperatures along the northeast US shelf (Chen and
Kwon, 2018). El Niño events have been linked to anoma-
lously fresh and cool conditions in the Gulf of Mexico and
warm surface water in the tropical North Atlantic (Alexan-
der and Scott, 2002; Gomez et al., 2019).

The physical variations and trends described above have
been accompanied by biogeochemical changes. The same ac-
cumulation of carbon dioxide in the atmosphere contributing
to ocean warming has acidified the ocean globally, though
circulation changes and warming water are delaying these
impacts in some regions of the northwest Atlantic (Salisbury
and Jönsson, 2018; Balch et al., 2022). The near disappear-
ance of oxygenated water from the Labrador Current has in-
creased hypoxia in the Gulf of St Lawrence and the surround-
ing shelf (Petrie and Yeats, 2000; Gilbert et al., 2005; Claret
et al., 2018; Jutras et al., 2020, 2023). These changes, com-
bined with concomitant shifts in stratification, have shifted
seasonal patterns of plankton productivity and zooplankton
assemblages (e.g., Balch et al., 2022; Friedland et al., 2023;
Morse et al., 2017) and altered harmful algal blooms (Clark
et al., 2019; Heil and Muni-Morgan, 2021; Townsend et al.,
2014). At the terrestrial interface, changes in land use and
precipitation patterns have altered the delivery of nutrients
and alkalinity to coastal waters (Rabalais et al., 1996; Stets
et al., 2014; Turner, 2021), shifting hypoxia and coastal acid-
ification patterns (Cai et al., 2011; Gomez et al., 2021; Ra-
balais et al., 2007).

The physical and biogeochemical changes in the north-
west Atlantic have been associated with pronounced shifts
in the distribution, phenology, and productivity of living ma-
rine resources (LMRs) and have led to significant ecosys-
tem, socio-economic, and public health consequences. In the
northeast USA, most fish habitats have shifted to the north
(Bell et al., 2015; Pinsky and Fogarty, 2012; Lucey and
Nye, 2010; Nye et al., 2009) or offshore and to deeper water
(Kleisner et al., 2016; Mazur et al., 2020; Nye et al., 2009) as
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the ocean has warmed, although Bell et al. (2015) found that
not all shifts can be directly connected to temperature. Many
of these shifts have occurred across historical management,
political, and regional ocean modeling boundaries, empha-
sizing the need for a broad, coastwide perspective. Species
distribution changes are likely to continue as climate change
progresses, both in the northwest Atlantic and globally, lead-
ing to geopolitical conflicts and management challenges as
species cross the boundaries of exclusive economic zones
(Pinsky et al., 2018) and fishers struggle to keep up with the
changes (Pinsky and Fogarty, 2012). Warming water in the
northwest Atlantic has also increased cod mortality, result-
ing in a collapse of cod fisheries (Pershing et al., 2015), and
decreased the abundance of Calanus finmarchicus, leading
to an extinction-level threat to the North Atlantic right whale
that feeds on it (Meyer-Gutbrod et al., 2021) and being likely
to cause an expansion of harmful algal blooms (HABs) in the
Gulf of St Lawrence (Boivin-Rioux et al., 2022).

Shorter-term climate variability can also have substantial
impacts, such as the link between a positive phase of the
NAO with a sharpened poleward decline in species diversity
(Fisher et al., 2008) and lower fish catches and decreased
fishing employment and wages in New England (Oremus,
2019). River discharge and upwelling have produced fre-
quent co-occurrences of hypoxia and HABs on the West
Florida Shelf (Turley et al., 2022). The compound stresses
of marine heat waves, ocean warming, and acidification pose
an increasing threat to coral reefs in the Caribbean Sea and
other parts of the subtropical North Atlantic, with effects fur-
ther exacerbated by chronic water quality challenges (Hoegh-
Guldberg et al., 2007; Donovan et al., 2021; Leggat et al.,
2019), and also threaten bivalves in the coastal North Atlantic
(Griffith and Gobler, 2017; Waldbusser et al., 2015).

Numerous studies suggest that it is possible to anticipate
some of the physical and biogeochemical changes in the
northwest Atlantic through dynamical or statistical forecasts
(e.g., Stock et al., 2015; Tommasi et al., 2017a; Chen et al.,
2021). Furthermore, a growing number of cases studies sug-
gest that such predictions can improve marine resource man-
agement decisions and contribute to resilient marine ecosys-
tems and coastal communities (Tommasi et al., 2017c). In the
northwest Atlantic, Mills et al. (2017) found that observed
early-spring temperature anomalies in the Gulf of Maine
could skillfully predict the start date of high lobster land-
ings, with the potential to moderate supply chain disruptions
associated with anomalous ocean conditions (Mills et al.,
2013). Miller et al. (2016) and du Pontavice et al. (2022)
showed that accounting for the effect of the cold pool (a sea-
sonally formed cold water mass at the bottom of the north-
east US continental shelf) on yellowtail flounder recruit-
ment in a stock assessment model can improve the predictive
skill of recruitment and spawning stock biomass. Tommasi
et al. (2017a) found that skillful probabilistic prediction of
decadal-scale temperature anomalies was possible if viewed
relative to the 50-year baseline of trawl survey data, sug-

gesting the potential to anticipate species range shifts on the
decadal timescales of capital investments by fishers (Tom-
masi et al., 2017b). While such outcomes are promising,
the uptake of ocean predictions into LMR management has
been slowed in part by limited availability of skillful high-
resolution predictions across a range of marine-resource-
relevant physical and biogeochemical variables with reliable
estimates of prediction uncertainty.

Improved understanding of the drivers of historical trends
and improved capability to predict and project LMR-relevant
future changes in the northwest Atlantic require modeling
systems that have both high enough spatial resolution and
enough complexity to resolve physical and biogeochemical
processes across scales and enough computational efficiency
to run ensemble simulations that represent uncertainty about
the future. In the northwest Atlantic, past results suggest
that ocean resolution on the order of 1/10◦ or higher is re-
quired to accurately simulate features of the western bound-
ary current, including the separation and downstream path
of the Gulf Stream (Chassignet and Marshall, 2008; Chas-
signet and Xu, 2017, 2021) and the dynamics of Loop Cur-
rent eddies (Oey et al., 2013), and smaller but ecologically
critical local ocean features, such as the narrow Northeast
Channel in the Gulf of Maine, which is a deep passage-
way for water from the slope (Saba et al., 2016), and the
coastal hypoxia zone on the Louisiana–Texas Shelf (Fen-
nel et al., 2013). Future projections of climate for the region
from lower-resolution models that fail to simulate these fea-
tures can differ substantially from higher-resolution models
that do (Liu et al., 2012; Drenkard et al., 2021; Li et al.,
2022). The computational cost of the resolution and com-
plexity needed to simulate such features conflicts with the
desire to temper the computational demands of multiple en-
semble members of lengthy simulations required to project
the range of ocean futures across management-relevant time
horizons from seasons to centuries (Drenkard et al., 2021).
For example, current-generation seasonal ocean prediction
systems typically rely on low ocean resolution to balance
the computational demands of running decades of retrospec-
tive forecasts with multiple ensemble members, and these
systems have markedly lower forecast skill for the US East
Coast compared to other ocean and coastal regions (Stock
et al., 2015; Hervieux et al., 2017; Shin and Newman, 2021).

Regional ocean and ecosystem modeling systems can
bring the benefits of high model grid resolution and complex-
ity to an area of interest while maintaining the computational
feasibility of running decadal- to centennial-scale simula-
tions with many ensemble members. Regional models also
allow for region-specific optimization of model parameters
and the inclusion of regionally important processes that are
too computationally costly or not represented in global model
simulations. For example, current-generation global ocean
models typically simulate tides and their effects only implic-
itly through parameterizations (Holt et al., 2017), while a re-
gional model that explicitly includes tides may be able to rep-
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resent processes that are known to be important in the north-
west Atlantic, such as spring–neap variability in temperature
and tidal pumping of nutrients in Georges Bank (Bisagni and
Sano, 1993; Hu et al., 2008) and eddy activity in the Gulf
Stream region (Chassignet and Xu, 2021). For these reasons,
regional ocean models will continue to be an important tool
even as the resolution and complexity of global models im-
prove with increasing processor speed and supercomputing
power (Drenkard et al., 2021). However, although regional
ocean models offer a number of advantages, they also present
new challenges. The ocean boundary conditions in a regional
model, for example, often exert a substantial influence over
the interior solution (e.g., Ghantous et al., 2020), yet spec-
ification of these boundary conditions is an ill-posed prob-
lem (Bennett and Kloeden, 1981; Marchesiello et al., 2001;
Oliger and Sundstrom, 1978). In addition, while regional do-
mains temper the computational constraints of global simu-
lations, they do not eliminate them. A balance must still be
struck between sufficient resolution and computational econ-
omy if ensemble predictions spanning the range of potential
ocean futures are to be generated.

In this paper, we describe the development and evalua-
tion of a baseline 1/12◦ regional ocean and biogeochemi-
cal model for retrospective and predictive applications in the
northwest Atlantic Ocean: MOM6-COBALT-NWA12 v1.0
(Fig. 1a). This model is derived from the Geophysical Fluid
Dynamics Laboratory (GFDL) global ocean (MOM6), sea
ice (Sea Ice Simulator version 2, SIS2), and ocean bio-
geochemistry (Carbon, Ocean Biogeochemistry and Lower
Trophics, COBALT) models (Adcroft et al., 2019; Stock
et al., 2020) and combines the features of the global versions
of these models, including computational efficiency and sta-
bility, with newly developed open boundary conditions and
regional modeling capabilities to deliver a feature-rich yet
computationally tractable regional ocean physical-ecosystem
model. The model is intended to support marine resource ap-
plications across management time horizons from weeks to
seasons to multiple decades and covers a large “coastwide”
domain to address the prominent climate impacts expected
to extend across fishery management regions and other tra-
ditional geopolitical boundaries. The model domain also ex-
tends considerably into the North Atlantic basin to smoothly
connect basin-scale and coastal drivers of ecosystem change.

Confidence in the intended applications is linked to the
model’s capacity to accurately simulate past observed re-
sponses across these scales. Thus, in the sections that fol-
low, we detail the development and configuration of the
model components for a historical simulation covering 1993
to 2019, evaluate the ability of the model to reproduce the
historical means of and variability in metrics with ecosystem
relevance, and discuss several notable sensitivities that we
identified during model development. Finally, we emphasize
that the configuration herein is intended as an open develop-
ment baseline supporting sustained model improvement. We
thus conclude with a discussion of model strengths and limi-

Figure 1. (a) Model domain and bathymetry. The color-scale spac-
ing is more detailed in the first 500 m to show shallow bathymet-
ric features on the shelves. Annotations are placed near three geo-
graphic features mentioned in the text. (b) Northeast US ecological
production units (EPUs) used for some model evaluation metrics:
Scotian Shelf–eastern Gulf of Maine (SS), Gulf of Maine (GOM),
Georges Bank (GB), and Mid-Atlantic Bight (MAB).

tations, with an eye toward future improvements, and a long-
term goal of supporting climate-informed decisions across
LMR management and decision-making time horizons from
seasons to multiple decades.

2 Methods

MOM6-COBALT-NWA12 is comprised of coupled model
components for ocean physics, ocean biogeochemistry, and
sea ice. In this section, we detail the development and con-
figuration of the regional model components and describe the
configuration and evaluation of a reanalysis-forced simula-
tion to determine whether the model is fit for purpose.

2.1 Physical ocean model configuration

A summary of the main configuration choices used in the
MOM6 component of the model is presented in Table 1. Hor-
izontally, the model is based on an Arakawa C grid (Arakawa
and Lamb, 1977) with 775× 845 tracer points. The horizon-
tal grid and bathymetry, shown in Fig. 1a, are extracted from
the larger North Atlantic basin model of Xu et al. (2010),
with open boundaries along the south, east, and north edges.
Compared to a previous model based on the Regional Ocean
Modeling System that was developed by several coauthors
of this study (Kang and Curchitser, 2013, 2015) and applied
to climate and ecosystem downscaling simulations (Alexan-
der et al., 2020; Baumann et al., 2022; Clark et al., 2022),
the NWA12 model domain is expanded to include the critical
Grand Banks region in the northeast, cover the full Caribbean
Sea including the coasts of Puerto Rico and the Virgin Is-
lands, and generally place the open boundaries farther from
coastal regions of interest. The resolution is 1/12◦ through-
out most of the domain, and the zonal distance between
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grid points varies primarily with latitude from approximately
9 km at the southern boundary to 5 km at the northern bound-
ary. Vertically, the model uses a z∗ coordinate (a height co-
ordinate that is rescaled with the free surface; Adcroft and
Campin, 2004) with 75 layers and partial bottom cells, iden-
tical to the z∗-only configuration of the global OM4 model
in Adcroft et al. (2019, hereafter A19) but different from
the hybrid z∗-isopycnal configurations also developed in A19
and employed in GFDL’s global climate and earth system
models. The vertical resolution is finest near the surface,
where the layer thickness is 2 m, and the layer thickness
gradually increases with depth to a maximum thickness of
250 m above the deepest model depth of 6500 m. The shal-
lowest bathymetry in the model is 10 m. The model is inte-
grated forward in time with a split explicit method (Hallberg,
1997; Hallberg and Adcroft, 2009). The baroclinic time step
is 600 s, and the time-varying barotropic time step is set to
the largest integer fraction of the baroclinic time step that is
less than 90 % of the maximum stable time step. To increase
computational efficiency, we used MOM6’s sub-cycled time-
step capabilities to update the thermodynamics and biogeo-
chemistry (BGC) on a slower 1800 s time step, and the atmo-
spheric forcing data and external biogeochemical boundary
data are updated hourly. The computational efficiency gained
through these choices is discussed in the Results.

The ocean model subgrid-scale parameterizations are
adapted from the 1/4◦ global model of A19, with updates and
modifications to account for the increased horizontal resolu-
tion and other differences in MOM6-COBALT-NWA12. The
planetary boundary layer is parameterized using the same
Reichl and Hallberg (2018) energetic planetary boundary
layer scheme; however, the parameterization in NWA12 in-
cludes the updates by Reichl and Li (2019) to account for
enhanced mixing by Langmuir turbulence. Since our resolu-
tion resolves the first baroclinic deformation radius across
the majority of the model domain, except on the shelves
(Hallberg, 2013), and thus captures a considerable fraction
of the mesoscale dynamics, we did not include a mesoscale
eddy mixing parameterization (nor did the 1/4◦ configura-
tion in A19). Restratification of the mixed layer by subme-
soscale eddies is parameterized using the scheme based on
Fox-Kemper et al. (2011). As in A19, we found a strong
sensitivity of the simulated mixed-layer depths to the sub-
mesoscale front length parameter in this scheme, and we in-
creased the front length from 500 m in A19 (which is on the
lower end of values typically used; Bodner et al., 2023) to
1500 m. This increased front length decreases restratification
arising from the parameterization. Like A19, the horizontal
biharmonic viscosity is formulated as the maximum of ei-
ther a Smagorinsky viscosity or a fixed viscosity of the form
u41

3
x , where 1x is the local grid spacing (Griffies and Hall-

berg, 2000). NWA12 uses u4 = 1 cm s−1, the same as A19,
with a Smagorinsky coefficient of 0.015, which is reduced
from 0.06 in A19. Mixing by shear-driven turbulence is mod-

eled using the Jackson et al. (2008) parameterization as in
A19.

There are a few other differences from A19. Most notably,
MOM6-COBALT-NWA12 includes explicit tidal dynamics
forced by both the boundary and the astronomical tidal po-
tential. We thus removed the unresolved tidal velocity from
the formulation of the bottom drag, and we did not include
parameterized mixing or the additional tracer diffusivity that
A19 used to account for internal tides. Background vertical
viscosity was reduced to its molecular value. We also ne-
glected the parameterized conversion of energy dissipated
in the bottom boundary layer to diapycnal mixing by reduc-
ing the parameter for the efficiency of this process from 0.20
in A19 to 0.0. When this parameterization was enabled, the
model tended to produce exaggerated mixing at the bottom
of many coastal areas, which prevented the development of
realistic bottom hypoxia in the coastal Gulf of Mexico. The
efficiency is considered poorly constrained (generally within
a range of 0.0–0.2) and tunable (Gregg et al., 2018; Legg
et al., 2006), although eliminating this parameterization of
physical mixing may partially compensate for numerically
induced mixing in the z∗ coordinate model (Griffies et al.,
2000).

As in A19, MOM6-COBALT-NWA12 simulates sea ice
and its interaction with the ocean using a coupled sea ice
model, Sea Ice Simulator version 2 (SIS2). We refer the
reader to A19 for a description of the SIS2 model and config-
uration; the configuration used in MOM6-COBALT-NWA12
is identical except we have reduced the ice dynamics time
step to 600 s to match the ocean baroclinic time step. SIS2
does not yet support open boundary conditions for sea ice.

2.1.1 Physical ocean model forcing

Boundary conditions for combined tidal and subtidal sea
level and barotropic velocity are set using a Flather (1976)
radiation boundary condition. Baroclinic flow at the bound-
ary is set using the radiation scheme of Orlanski (1976) com-
bined with nudging toward external forcing data following
Marchesiello et al. (2001). Boundary normal and tangential
velocities are strongly nudged toward the forcing data with a
3 d timescale for flow entering the model and weakly nudged
with a 360 d timescale for outgoing flow. Temperature and
salinity boundary conditions are set using a reservoir scheme
that gradually adjusts boundary data toward interior values
on outflow and exterior values on inflow, which allows the
tracer boundary conditions to retain a memory of the prop-
erties of flow that exits and re-enters the domain. The reser-
voir length scale is set to 9 km for both inflow and outflow,
which is approximately equal to a 1–10 d timescale for a 10–
1 cm s−1 flow and allows the boundary to adjust to changes
on weather timescales. The development of and sensitivity
to this novel reservoir scheme are being addressed in a sep-
arate publication. For all prognostic model variables there is
no nudging to observed data within the model domain – the
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Table 1. Major parameters and associated values used in the physical ocean (MOM6) component of the model and relevant references
describing the parameter or the choice of value. BGC denotes biogeochemistry; SAL denotes self-attraction and loading.

Parameter Value Reference

Vertical coordinate 75-layer z∗ Adcroft et al. (2019)

Baroclinic time step 600 s

Thermodynamics and BGC time step 1800 s

Planetary boundary layer parameterization ePBL Reichl and Hallberg (2018)

Submesoscale eddy front length 1500 m Fox-Kemper et al. (2011), Bodner et al. (2023)

Biharmonic viscosity Maximum of Smagorinsky
and resolution-dependent viscosities

Griffies and Hallberg (2000)

Smagorinsky coefficient 0.015
Resolution-dependent 0.0113

x m4 s−1 Adcroft et al. (2019)

Bottom boundary layer mixing efficiency 0.0

Background kinematic viscosity 1.0× 10−6 m2 s−1

Background diapycnal diffusivity 1.0× 10−6 m2 s−1

Boundary conditions
Sea level and barotropic velocity Flather scheme Flather (1976)
Baroclinic velocity Radiation and nudging scheme

(3 d inflow, 360 d outflow timescales)
Marchesiello et al. (2001), Orlanski (1976)

Tracers Reservoirs with 9 km length scales

Tidal SAL coefficient 0.01 Irazoqui Apecechea et al. (2017), Stepanov and
Hughes (2004)

Opacity scheme three-band with chlorophyll Manizza (2005)

model does not use a “sponge layer” near the boundary or
apply restoring of properties like surface salinity. Attaining
a reliable solution without using these features was an em-
phasis of model development and facilitates use of the model
in downscaled climate projections and other scenarios where
accurate internal data to restore to may not be available (it
will, however, be necessary to confirm that the model re-
mains reliable over simulations longer than the 27-year run
examined here).

In the reanalysis-driven hindcast simulation presented in
this paper, external boundary data for temperature, salinity,
and subtidal velocity and sea level were specified using daily
averages from the GLORYS12 v1 ocean reanalysis (Lel-
louche et al., 2021). This reanalysis provides high-resolution
(1/12◦) daily data and has been found to be one of the better-
performing ocean reanalyses in coastal areas including the
northeast USA (Carolina Castillo-Trujillo et al., 2023) and
California current system (Amaya et al., 2023). Tidal varia-
tions in sea level and velocity were superimposed on the sub-
tidal boundary data using tidal harmonics from the TPXO9
v1 dataset (Egbert and Erofeeva, 2002). Four semidiurnal
constituents (M2, S2, N2, and K2), four diurnal constituents
(K1, O1, P1, and Q1), and two long-period constituents (Mm
and Mf) were included in the boundary forcing. Modulation

by the 18.6-year nodal cycle was included by calculating
correction factors for the amplitude and phase of each con-
stituent at yearly intervals. Astronomical tidal forcing from
the same 10 constituents was also included throughout the
domain as a body force in the momentum equations. The ef-
fects of self-attraction and loading were also included using
the scalar approximation (Accad and Pekeris, 1978) with a
coefficient of 0.01.

Freshwater discharge from rivers was sourced from the
gridded daily GloFAS reanalysis version 3.1 (Alfieri et al.,
2020). River discharge was mapped to the MOM6 grid using
the local drainage direction map to identify outlet points ad-
jacent to the coast and any chains of outlet points adjacent to
these coastal outlets, and the streamflow at each outlet point
was mapped to the nearest MOM6 coastal ocean grid cell.
River discharge was added at the surface at the discharge grid
cells, and an additional source of turbulent kinetic energy was
added at discharge points to vertically mix the water column
up to 5 m deep. River discharge entered with zero salinity
and a temperature equal to the surface temperature of the
discharge grid cell. We found that the GloFAS product over-
estimated the streamflow in the Mississippi River, so we ap-
plied a bias correction using a linear regression between the
GloFAS Mississippi River discharge and the United States
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Geological Survey (USGS) gauge at Belle Chasse, LA. We
evenly divided this adjusted flow into two points that dis-
charged on the western side of the river delta and one point
on the eastern side, which is roughly consistent with the real
partitioning of discharge from the delta (Dagg and Breed,
2003; Dinnel and Wiseman, 1986). River discharge from the
Atchafalaya River did not appear to need adjustment. We also
manually adjusted the location of discharge from the Susque-
hanna River to ensure that it entered the model at the correct
location in Chesapeake Bay.

Momentum, heat, freshwater, and radiation fluxes between
the ocean and atmosphere were calculated using the hourly
ERA5 atmospheric reanalysis (Hersbach et al., 2020) and the
Large and Yeager (2004) bulk algorithm, with the inclusion
of the Large and Yeager (2004) adjustment for the tempera-
ture and humidity reference height of 2 m in the ERA5 data.
Chlorophyll predicted by the coupled COBALT biogeochem-
ical component of the model, presented next, was used to
specify the vertical profile of the absorption of shortwave ra-
diation following the Manizza (2005) scheme.

2.2 Biogeochemical model configuration

The MOM6 physical ocean component is coupled with
the Carbon, Ocean Biogeochemistry and Lower Trophics
(COBALT) biogeochemical model (Stock et al., 2014, 2020),
with a number of enhancements intended to improve the ro-
bustness of the biogeochemical model across the spectrum of
coastal to open-ocean environments included in the NWA12
domain. For the plankton food web, we drew from Van Oost-
ende et al. (2018) to add a fourth phytoplankton group to bet-
ter represent spring bloom diatoms that can be particularly
prominent in high-productivity coastal regions. The phyto-
plankton parameters enlisted in this run are summarized in
Table A1. Direct phytoplankton sinking was added to com-
plement phytoplankton aggregation losses under poor growth
conditions and better capture the absence of large diatoms
in the subtropical gyres. Upon reaching the bottom, these
slowly sinking particles were assumed to settle into a neph-
eloid layer and be available for resuspension if the bottom
was shallower than twice the depth of the actively mixed
layer, and they were otherwise remineralized. Other aspects
of particle sinking and remineralization are as described in
Stock et al. (2020).

Phytoplankton in very deep mixed layers (those exceed-
ing three e-folding depths) were assumed to photoacclimate
to mean light levels over the first three e-folding depths,
while those in shallow mixed layers were assumed to pho-
toacclimate to mean light levels over the mixed layer. This is
consistent with results of optimality models suggesting that
phytoplankton in deep mixed layers must adapt to elevated
light conditions closer to the surface (Talmy et al., 2013) and
was found to improve the model’s representation of offshore
bloom timing and magnitude in the NWA12 domain.

Increased flexibility was added to the zooplankton grazing
kernels to better represent the feeding flexibility of the di-
verse groups included within COBALT’s three zooplankton
size classes (Fuchs and Franks, 2010; Hansen et al., 1994).
The prey availability is summarized in Table A2. In accor-
dance with Van Oostende et al. (2018), grazing of the largest
phytoplankton size class was limited primarily to the largest
zooplankton (i.e., large-bodied copepods and krill), with only
weak controls by medium-sized zooplankton. More flexibil-
ity was allotted across the smaller size classes.

To better represent light limitation in nearshore waters
and/or waters under strong riverine influence, we enhanced
the light attenuation in waters with salinity < 30 PSU or
depth < 30 m to levels consistent with case-2 waters (Jerlov,
1976). This was achieved by augmenting the background
light attenuation in the Manizza (2005) scheme by 0.05 m−1.
This yields blue–green diffuse attenuation rates of about 0.1–
0.3 m−1 (transmittance of 90 % m−1 to 75 % m−1) for typical
coastal chlorophyll levels between 0.5 and 5 mg chl m−3, re-
spectively. This augmentation to the light attenuation is cur-
rently only active for photosynthetic calculations in the bio-
geochemical model and is acknowledged to be a simple first
step toward more comprehensive representations of complex
coastal ocean optics (e.g., Skákala et al., 2020). Its inclusion
reflects the potential importance of the depth of the euphotic
zone for hypoxia in the Gulf of Mexico (Schaeffer et al.,
2011).

To allow COBALT to better integrate riverine nutrient in-
puts that have nitrogen-to-phosphorus ratios (N : P) that of-
ten strongly depart from characteristic oceanic (i.e., Red-
field) values, we augmented the phytoplankton N : P ratios
for small, medium, and large phytoplankton to include the
potential for reduced P usage in low-P environments (i.e., “P
frugality”). This was parameterized with the emergent neg-
ative relationship between phytoplankton N : P and P con-
centration identified by Galbraith and Martiny (2015), en-
abling phytoplankton to achieve a maximum N : P ratio of
31 (nearly twice the canonical Redfield ratio) in low-P envi-
ronments. Minimum N : P ratios were restricted to character-
istic values for each size class (Finkel et al., 2010) because
the highest-P regions in the NWA12 are generally associ-
ated with high N : P riverine inputs, which observations (e.g.,
Sterner and Elser, 2003; Hall et al., 2005) suggest would pre-
vent the lower N : P ratios predicted by the Galbraith and
Martiny (2015) relationship under phosphate-rich conditions.
The net effect of this simple phytoplankton N : P parameter-
ization is thus to allow phytoplankton to better utilize excess
N under low-phosphate conditions, while reverting to char-
acteristic N : P ratios under moderate and high phosphate
levels. The addition of the fourth phytoplankton group and
dynamic phytoplankton N : P ratios increases the number of
prognostic state variables in COBALT from 33 in its standard
formulation to 40.
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2.2.1 Biogeochemical model forcing

Open boundary data for biogeochemical tracers were set us-
ing several sources. Boundary data for NO3, O2, PO4, and
SiO4 were obtained from climatologies in the World Ocean
Atlas (WOA) 2018 dataset (Boyer et al., 2019). In the up-
per 800 m, we used seasonal climatologies from the WOA as
boundary conditions, while below 800 m (where only long-
term mean values are available) we used the long-term mean
data. Boundary data for alkalinity (ALK) and dissolved inor-
ganic carbon (DIC) were estimated from GLORYS monthly
average temperature and salinity by applying the methods de-
veloped by Carter et al. (2021). We used the multiple linear
regression version of the algorithm from Carter et al. (2021)
that predicts ALK and DIC from potential temperature and
salinity using a multiple linear regression, with an adjust-
ment for the year. Carter et al. (2021) fit parameters for the
regression over a 5◦× 5◦× 33 depth grid, and these coef-
ficients were then interpolated to the NWA12 model bound-
aries and used to predict time-varying ALK and DIC from the
interpolated GLORYS12 temperature and salinity. Boundary
data for the remaining tracers, which generally have shorter
turnover times, were set to 1993–2014 averages from the
global COBALT simulation of Stock et al. (2014).

Biogeochemical tracers used the same tracer reservoir
boundary condition scheme as temperature and salinity.
However, as the external biogeochemical fields are not as
well constrained by data as temperature and salinity and bio-
geochemical simulations are sensitive to even small amounts
of spurious mixing or circulation near the boundary, we in-
creased the inflow length scale to 300 km. This succeeded
in imposing the desired lower-frequency biogeochemical
trends at monthly and longer timescales while approach-
ing a no-gradient condition for dynamics operating on daily
timescales within the euphotic zone, thus dampening spuri-
ous biogeochemical signals. The impacts from such signals
are further dampened by the large distance between the do-
main boundaries and the coastal regions of primary interest.

The primary source of river nutrient, carbon, and alkalin-
ity data was the River Chemistry for the United States Coast
(RC4USCoast) dataset compiled by Gomez et al. (2023).
This product relies mainly on river chemistry observations
from the USGS sub-selected for inputs to coastal waters and
processed into monthly climatologies and, where possible,
time series. The simulations herein used the 1990–2022 cli-
matology to constrain dissolved organic carbon (DIC), al-
kalinity (ALK), nitrate (NO3), ammonia (NH4), phosphate
(PO4), the dissolved and particulate organic phases of N and
P, oxygen (O2), and silicate (SiO4, derived from data on sili-
con dioxide, SiO2). Of particulate phosphorus, 50 % was as-
sumed to be mobilized in estuaries, with the remainder buried
(Froelich, 1988; Sutula et al., 2004). Dissolved organic nitro-
gen and phosphorus inputs were fractionated to labile (40 %),
semi-labile (30 %), and semi-refractory (30 %) pools to be

consistent with the range of bioavailability in Wiegner et al.
(2006).

For Canadian waters, the river forcing described in Lavoie
et al. (2021) was enlisted. These data included DIC, ALK,
and nitrate. Other nutrient inputs were estimated by ap-
plying the ratios between dissolved inorganic nitrogen and
PO4 and dissolved and particulate N and P from the semi-
empirical GlobalNEWS2 algorithm (Mayorga et al., 2010)
to the Lavoie et al. (2021) nitrate estimates. GlobalNEWS2
estimates were enlisted directly to constrain river inputs in
Mexico and Central and South America. Oxygen for Cana-
dian and Mexican–Central American–South American rivers
was specified to be in equilibrium with climatological ocean
temperatures at the river mouths. Following de Baar and de
Jong (2001), iron concentrations in all rivers were specified
to be 70 nM.

RC4USCoast and other nutrient concentrations were
mapped onto GloFAS freshwater inputs (see Sect. 2.1) using
a nearest-neighbor algorithm with larger rivers superseding
smaller ones. Nutrient loads vary with river flows and month,
but more subtle variations/trends in nutrient concentrations
over the 1993–2019 model simulation period (e.g., increas-
ing alkalinity in the Mississippi–Atchafalaya river system;
Gomez et al., 2021) are omitted for the baseline configura-
tion presented herein.

For the atmosphere, time- and latitude-varying atmo-
spheric CO2 concentration was set using the monthly his-
torical time series from Meinshausen et al. (2017). We ex-
tended the historical CO2 time series, which ends in 2014,
using the atmospheric CO2 concentration projected under
the SSP2-4.5 emissions scenario (Meinshausen et al., 2020).
Wet and dry deposition of NO3, NH4, and lithogenic dust
was specified using a 1993–2014 monthly climatology from
the historical simulation of GFDL’s ESM4.1 earth system
model (Dunne et al., 2020). As in ESM4.1 (Stock et al.,
2020), iron deposition was approximated by assuming that
dust is composed of 3.5 % iron and iron solubility varies in-
versely with the surface dust concentration following Baker
and Croot (2010). Dry deposition of phosphorus was also ap-
proximated from the climatology of dry dust deposition by
assuming that dust consists of 563 ppm phosphorus of which
22 % is bioavailable. These values were obtained from the
global ocean averages of Herbert et al. (2018).

2.3 Model spinup and hindcast simulation

The primary model simulation evaluated in this paper is a
hindcast simulation that was run from 1993 to 2019 using
the configuration and forcing described in previous sections.
This simulation was initialized from rest on 1 January 1993.
The ocean temperature and salinity were initialized by di-
rectly using GLORYS12 temperature and salinity for that
date rather than starting from a previously run spinup sim-
ulation. During model development, we found that spinning
up the physics first, by repeating either the first year or the
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first 10 years, produced less reliable initial conditions than
the high-resolution GLORYS12 reanalysis and led to sub-
stantial errors in the beginning of the simulation. For the
biogeochemical tracers, however, we ran a 10-year spinup
beforehand to allow the biogeochemistry to adjust from the
coarse climatological initial conditions, at least near the sur-
face. This spinup simulation also started from rest in 1993
using initial conditions from the GLORYS12 reanalysis and
the same biogeochemical data sources used to create the
boundary conditions. We ran this simulation for 10 years us-
ing 1993–2002 time series of forcings described previously.
Carbon dioxide forcing was applied differently during this
spinup simulation, however, to obtain a model state closer
to equilibrium with 1993 conditions: atmospheric CO2 was
applied by repeating the 1993 annual cycle from the Mein-
shausen et al. (2017) forcing dataset, and open-boundary-
condition ALK and DIC were calculated using the Carter
et al. (2021) algorithm with the time fixed to 1993. We then
started the main hindcast simulation on 1 January 1993 us-
ing the biogeochemical tracer fields at the end of the spinup
simulation as initial conditions for the main simulation.

2.4 Model evaluation

To evaluate the utility of the NWA12 model for marine re-
source applications, we focused on three aspects of the model
performance. First, we considered general, basin-wide indi-
cators of the model simulation fidelity, such as climatolo-
gies of surface temperature and macronutrients, and drivers
of large-scale variability, such as the mean of and variability
in the position of the Gulf Stream. Second, we evaluated a
high-priority subset of features that are essential to simulate
accurately in order to reproduce regional ecosystem variabil-
ity, such as the temperature and salinity of water entering the
Gulf of Maine at depth through the Northeast Channel, and
fine-scale ecosystem responses to climate variability, such as
hypoxia on the Louisiana–Texas Shelf. For these two sets of
model–data comparisons, a summary of the metrics consid-
ered and the datasets used as references is provided in Ta-
ble 2. Third, we tested the computational cost and scaling of
the model to assess the feasibility of using the model to run
the long hindcasts and multi-member forecasts and projec-
tions needed to inform living-marine-resource management
and other applications to coastal ocean decision-making.

Most physical ocean metrics were evaluated using the
GLORYS12 reanalysis, which was also used as the model
open boundary conditions and reliably simulates regional
hydrography (Carolina Castillo-Trujillo et al., 2023), as
a reference dataset. We also included results from one
or more in situ or remote sensing observational datasets
as an additional comparison where available. For most
model–data comparisons, we calculated four quantitative
skill metrics: bias (mean difference between model and
data), root mean square error (RMSE), Pearson correla-
tion coefficient (corr., or r), and median absolute error

(MedAE, expressed as median(|modeli − datai |), which is
robust against outlying errors). For chlorophyll, we used the
Spearman rank correlation instead of the Pearson correla-
tion due to the nonlinearity of the data. All of these met-
rics were calculated using the xskillscore Python module
(https://doi.org/10.5281/zenodo.5173153, Bell et al., 2021).
For spatial comparisons where the observed product had
a similar resolution to the NWA12 model grid (finer than
1/4◦), the observations were bilinearly interpolated onto the
model grid. One exception is chlorophyll a, which has fine
resolution in the observed product (4 km) and high spa-
tial variability and thus was interpolated onto the NWA12
model grid with a method that preserved the geometric mean
chlorophyll. For spatial comparisons where the observed
product had a resolution of 1/4◦ or coarser, the model data
were interpolated onto the observed product grid with a first-
order conservative method. All comparisons except for the
tidal sea surface height evaluation used monthly mean model
output or longer-period averages calculated from monthly or
daily means, so no processing was applied to remove tides
from the model output.

2.4.1 Basin-wide indicators of model performance and
drivers of variability

Model mean sea surface temperature (SST) was compared
with the means of the 1/4◦ OISST v2 product derived from
remote sensing and in situ observations (Reynolds et al.,
2007) and the GLORYS12 reanalysis. We compared the dif-
ference between the 1993–2019 model mean and the same
time period from the two reference datasets. We also evalu-
ated model biases in the seasonal SST climatology by com-
paring this metric to the OISST product.

We compared the 1993–2019 mean sea surface salinity
(SSS) from the model with the corresponding mean SSS
from the GLORYS12 reanalysis and from the NOAA Na-
tional Centers for Environmental Prediction (NCEI) regional
ocean climatologies, which are interpolated and quality-
controlled climatologies at 1/10◦ resolution derived from the
World Ocean Database (Seidov et al., 2018, 2019). For the
NCEI regional climatologies, which are provided as decadal
averages with the most recent decade extended to 2017, we
used the weighted average of the 1995–2004 and 2005–2017
means.

MOM6 computed the model mixed-layer depth (MLD)
online using the common definition of the mixed-layer bot-
tom as the depth where the potential density difference rel-
ative to the surface first reaches 0.03 kg m−3 (Griffies et al.,
2016). We compared the winter (January, February, March)
mean MLD with the long-term MLD climatology derived
from profiles in the World Ocean Database and Argo datasets
by de Boyer Montégut (2004). We used the November 2022
update to this dataset (https://doi.org/10.17882/91774, de
Boyer Montégut, 2023). The MLD in this dataset is also de-
fined as the depth where the density is 0.03 kg m−3 greater
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Table 2. Primary diagnostics used to evaluate the model, the time sampling of these diagnostics, and datasets used as references for evaluation
of model performance. SSH denotes sea surface height; ENSO denotes El Niño–Southern Oscillation.

Metric Time sampling Reference datasets

Sea surface temperature Annual and seasonal mean climatology GLORYS12
OISST v2

Sea surface salinity Annual mean climatology GLORYS12
NCEI regional climatologies

Mixed-layer depth Winter (January–March) mean climatology de Boyer Montégut (2004)

Gulf Stream position
15 ◦C isotherm at 200 m Annual mean climatology GLORYS12
Mean latitude of maximum SSH variability Annual mean climatology Satellite altimetry
SSH-based index of Gulf Stream position Monthly time series

25-month rolling average
Satellite altimetry

Mean sea level Annual mean GLORYS12

M2 and K1 tidal amplitudes and phases Estimated from hourly model data TPXO9

Surface nutrients Seasonal mean climatology World Ocean Atlas 2018

Sea surface chlorophyll Seasonal mean climatology OC-CCI v6.0

Mesozooplankton biomass Seasonal mean climatology COPEPOD

Surface pCO2 Annual mean climatology
Seasonal amplitude

Bakker et al. (2016)
Landschützer et al. (2020a)

Surface ALK, DIC, �ar 2004–2018 mean Jiang et al. (2022)

Sea surface temperature Trend of annual mean 2005–2019 GLORYS12
OISST v2

Vertical temperature profiles in NE US EPUs Seasonal mean climatology GLORYS12

Bottom temperature in NE US EPUs Annual average anomalies NOAA Fisheries surveys
GLORYS12

Deep water in the Northeast Channel Monthly mean time series CTDs
Buoy N01
GLORYS12

Winter sea ice Monthly climatology of concentration
Time series of extent in Gulf of St
Lawrence

Cavalieri et al. (1996)

Mid-Atlantic Bight cold pool June–September mean du Pontavice et al. (2022)

Gulf of Mexico chlorophyll anomalies Composite means of ENSO phases OC-CCI

LA–TX Shelf hypoxia Seasonal climatology and July time series Matli et al. (2020)

than the surface density; however, it uses 10 m depth as the
surface, whereas MOM6 uses the surface layer (between 0–
2 m here). On average this will introduce a small shallow
bias into the model MLD relative to the de Boyer Montégut
(2004) MLD when the model mixed-layer threshold is near
or above 10 m or the diurnal cycle of 0–2 m temperature is
large; however, as we examine only mixed layers during win-
ter, when mixing is deeper and the diurnal cycle is weaker,
the difference should be negligible.

The mean of and variability in the Gulf Stream position
were calculated using two different metrics, one using tem-
perature and the other using sea surface height (SSH). First,
we calculated the position of the north wall of the Gulf
Stream based on the position of the 15 ◦C isotherm at 200 m
depth in the 1993–2019 mean temperature (Chi et al., 2019;
Fuglister and Voorhis, 1965). This metric was also calculated
using the GLORYS12 reanalysis for comparison. Second,
along meridional lines between 72 and 52◦W spaced 1◦ in
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longitude apart, we calculated the latitudes where the vari-
ance of the monthly mean sea surface height anomaly (the
difference between the monthly mean SSH and the 1993–
2019 calendar month mean) was highest. These latitude–
longitude points form the mean position of the Gulf Stream.
An index representing north/south shifts of the Gulf Stream
over time was calculated by averaging the sea level anomaly
at the mean Gulf Stream position points and then dividing it
by the standard deviation of the average sea level anomaly.
Although short-term eddy variability will introduce some
noise into this metric, longer-term means generally repre-
sent broad, coherent shifts in the Gulf Stream position, and
thus we also calculated a 25-month centered rolling aver-
age of the index. These metrics for SSH-based mean position
and variability are adapted from Pérez-Hernández and Joyce
(2014) and are the same as those used in the NOAA Fisheries
State of the Ecosystem (SOE) Report for the mid-Atlantic
(NOAA Fisheries, 2022a). This metric was also calculated
using monthly mean absolute dynamic topography from the
gridded satellite altimetry dataset provided by the Coper-
nicus Marine Service (https://doi.org/10.48670/moi-00148,
Global Ocean Gridded L4 Sea Surface Heights And Derived
Variables Reprocessed 1993 Ongoing, 2023). We also com-
pared long-term mean sea surface height in the broader west-
ern boundary current region using the GLORYS12 reanaly-
sis. The reanalysis assimilates satellite altimetry data and has
a nearly identical long-term mean, aside from an apparent
offset in the reference level.

The model simulation of tidal elevations was assessed by
calculating the amplitudes and phases of the largest semidi-
urnal (M2) and diurnal (K1) constituents for each model grid
point from hourly model output. Due to the computational
time and storage costs of saving hourly model output, this
assessment was only done for 1 year of model simulation
started in 1993 with the same initial conditions as the main
hindcast. This simulation also did not include the COBALT
biogeochemical component to reduce the computational cost.
Modulation of the tides by the 18.6-year nodal cycle was also
disabled for this run so that the modulation did not need to
be re-estimated and corrected for when calculating tidal con-
stituents properties from the model output. The amplitudes
and phases of the M2 and K1 constituents were calculated
at every grid point in the model using the UTide Python
package (Codiga, 2011; https://github.com/wesleybowman/
UTide, last access: 20 May 2020) and were compared with
corresponding amplitudes and phases from the TPXO tide
data used as tidal boundary conditions in the NWA12 model.

Model-predicted surface chlorophyll a (chl a) was com-
pared with satellite remote sensing estimates from the Ocean-
Colour Climate Change Initiative (OC-CCI) dataset version
6.0 (Sathyendranath et al., 2019), which merges estimates of
ocean surface chl a from multiple satellites and algorithms
into one consistent product. We compared the model and OC-
CCI seasonal climatologies calculated over 1998–2019.

The model seasonal mean climatology of mesozooplank-
ton biomass integrated over 0–200 m was compared with
observations from the COPEPOD dataset (Moriarty and
O’Brien, 2013). Mesozooplankton in the COBALT model
consists of the medium (200–2000 µm equivalent spheri-
cal diameter, ESD) and large (2000–20 000 µm ESD) size
classes. The COPEPOD dataset reports biomass that is ad-
justed to be consistent with measurements from a 333 µm
mesh (Moriarty and O’Brien, 2013), which is likely to ex-
clude a significant fraction of sizes on both the small and
the large end of COBALT’s zooplankton size range (Skjoldal
et al., 2013). Shropshire et al. (2020), for example, found that
mesozooplankton biomass in 333 µm mesh nets in the Gulf
of Mexico was approximately half (0.5093) that measured in
202 µm mesh nets. This is similar to the 0.6195 adjustment
found by O’Brien (2005), and Skjoldal et al. (2013) further
suggest that an even smaller 150 µm mesh net would be better
in coastal systems. Given these uncertainties, we multiplied
COPEPOD biomass estimates by 2 before comparing them
with COBALT. We recognize the possibility that escape by
larger zooplankton size classes and inefficient net sampling
of gelatinous zooplankton likely make the adjusted observa-
tions a lower bound for mesozooplankton biomass across the
size range covered by COBALT.

Model seasonal surface nutrient climatologies were as-
sessed by comparing modeled surface NO3 and PO4 with cli-
matologies from the World Ocean Atlas (WOA) 2018 (Boyer
et al., 2019). We used the seasonal climatologies from the
WOA dataset, which use a different definition of the sea-
sons (starting with January, February, March) than the stan-
dard meteorological seasons (starting with December, Jan-
uary, February) used in other analyses in this paper.

Model surface pCO2 was compared with observations
derived from the Surface Ocean CO2 Atlas database ver-
sion 2021 (SOCATv2021; Bakker et al., 2016) during 1993–
2019 and against a pCO2 data product generated from SO-
CAT observations by a two-step neural network interpola-
tion (data product; Landschützer et al., 2020a) during 1998–
2015. We evaluated the model and observed seasonal vari-
ability in pCO2, which is expressed as the root mean square
of the monthly pCO2 anomalies (rms, in µatm). Due to the
discontinuous pCO2 observations in time in the SOCAT
database, the evaluation of the model in reproducing the sea-
sonal pCO2 variability was only performed against the data
product.

Model surface total alkalinity, DIC, and the aragonite sat-
uration state were compared with long-term observed means
from the dataset of Jiang et al. (2022). This dataset applies an
objective analysis technique to observations from the Coastal
Ocean Data Analysis Product in North America (CODAP-
NA; Jiang et al., 2021) and Global Ocean Data Analysis
Project version 2 (GLODAPv2; Lauvset et al., 2021) to pro-
duce a 1◦ gridded long-term mean for each variable. The
model means were calculated over the years 2004–2018 to
match the time period of the observations from CODAP-NA.
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2.4.2 Relevant regional features and ecosystem
responses

Since the early 2000s, the ocean along the northeast United
States has warmed faster than the vast majority of all other
ocean regions (Pershing et al., 2015; Seidov et al., 2021). We
assessed the ability of the model to reproduce this warming
and other temperature trends throughout the model domain
by calculating the 2005–2019 annual mean sea surface tem-
perature trend at each point in the model and comparing this
with trends from the GLORYS12 and OISST datasets used
in Sect. 2.4.1. The year 2005 was chosen as the start date of
the trend analysis to match the date chosen by Seidov et al.
(2021) and is 1 year later than the date chosen by Pershing
et al. (2015).

Next, we assessed four metrics related to subsurface tem-
perature on the northeast US continental shelf: (1) subsurface
temperature climatologies within four ecological production
units (EPUs), (2) bottom temperatures averaged over the four
EPUs, (3) deep temperature and salinity within the Gulf of
Maine Northeast Channel and associated water masses, and
(4) bottom temperature within the Mid-Atlantic Bight cold-
pool region. All of these metrics except the first are used
to inform management in the NOAA Fisheries State of the
Ecosystem (SOE) reports for New England (NOAA Fish-
eries, 2022b) and the mid-Atlantic (NOAA Fisheries, 2022a).
Observed data for these metrics were obtained directly from
the SOE reports, and metrics from the model data were cal-
culated using nearly identical methods.

New England and mid-Atlantic fishery management EPUs
are defined for the southwestern Scotian Shelf–eastern Gulf
of Maine, the Gulf of Maine, Georges Bank, and the Mid-
Atlantic Bight (Fig. 1b). We evaluated two temperature di-
agnostics for these EPUs. The first diagnostic was verti-
cal profiles of seasonal temperature climatologies. Using the
model and the GLORYS12 reanalysis, the area-weighted
average temperature within each EPU, in waters deeper
than 60 m, was calculated for each season and each depth
level up to 150 m. The second diagnostic was the time se-
ries of annual mean bottom-temperature anomalies. Within
each EPU, area-weighted model average bottom tempera-
tures were computed, and anomalies were calculated by sub-
tracting the 1993–2010 monthly climatology for each EPU.
For comparison, EPU-average bottom-temperature anoma-
lies were extracted from the GLORYS12 reanalysis using
identical methods. The model bottom-temperature anomalies
were also compared with observations obtained directly from
data used in the SOE reports. These observed anomalies were
calculated using slightly different methods. Observed bottom
temperatures were derived from CTD profiles collected dur-
ing routine surveys that were performed at least twice per
year (most often in the late-spring and autumn months). The
annual harmonic method described in Mountain (1991), in
which the climatology is a simple sine wave with a period
of 1 year, was used to calculate these anomalies because it

works well at extracting anomalies from these sparse and ir-
regular data. Finally, for all three datasets, we calculated an-
nual averages of the monthly anomalies.

Third, we assessed the model’s ability to simulate wa-
ter masses entering the narrow, deep Northeast Channel in
the Gulf of Maine that drive ecosystem-relevant tempera-
ture and salinity variability within the gulf. Using methods
from Mountain (2012) and the NOAA Fisheries State of
the Ecosystem Report for New England (NOAA Fisheries,
2022b), we evaluated the model monthly mean potential tem-
perature and salinity averaged in the channel between 42.2–
42.6◦ N, 66.0–66.8◦W, and 150–200 m depth. Temperature
and salinity in the channel are influenced by mixing between
relatively cool, fresh Scotian Shelf Water (defined by Moun-
tain, 2012, as T = 2 ◦C, S = 32); moderately warm, salty
Labrador Slope Water (T = 6 ◦C, S = 34.6); and very warm,
salty Warm Slope Water (T = 12 ◦C, S = 35.4). Recent ob-
servations have shown a significant increase in Warm Slope
Water and a corresponding decrease in Labrador Slope Wa-
ter (Balch et al., 2022; NOAA Fisheries, 2022b), so we used
annual mean potential temperature and salinity to calculate
time series of the composition of the water in the channel in
percentages of these two masses using methods from NOAA
Fisheries (2022b). These metrics calculated from the model
were compared with matching metrics determined using po-
tential temperature and salinity from three different prod-
ucts: the database of CTD profiles used in NOAA Fisheries
(2022b), the GLORYS12 reanalysis, and the N01 buoy from
the Gulf of Maine Moored Buoy Program (Wallinga et al.,
2003) (available at 180 m depth from June 2004–July 2017).

Fourth, the ability of the model to simulate the cool bot-
tom water along the shelf that forms the Mid-Atlantic Bight
cold pool was assessed by comparing June–September mean
bottom temperatures in the model and GLORYS12 reanaly-
sis and calculating the cold-pool index developed by du Pon-
tavice et al. (2022) and reported in NOAA Fisheries (2022a).
This index uses the June–September bottom-temperature
anomaly averaged over a common cold-pool region defined
by depth, average temperature, and latitude and longitude;
see du Pontavice et al. (2022) for additional details. The in-
dex is higher when the bottom is warmer than average and
the cold pool is smaller than average. The index was cal-
culated by du Pontavice et al. (2022) using the GLORYS12
reanalysis from 1993–2019, and they extended the index far-
ther back in time using a bias-corrected ocean model simu-
lation. For historical context, we show the full time series;
however, the du Pontavice et al. (2022) index is only derived
from GLORYS12 during the time period when the model and
data overlap.

The coastal ocean in the far northern portion of the model
domain, including the Gulf of St Lawrence and the coast of
Labrador and Newfoundland, partially freezes over in the
winter. We assessed the ability of the coupled SIS2 sea ice
model to simulate the spatial and temporal variability in sea
ice cover in this region by comparing the model output with
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satellite observations of sea ice concentration from the Na-
tional Snow and Ice Data Center (NSIDC) (dataset NSIDC-
0051; Cavalieri et al., 1996). First, we compared the model
and satellite monthly climatologies of sea ice concentration
over 1993–2019. Second, we compared time series of the
areal extent of sea ice in the Gulf of St Lawrence by deter-
mining the total area with a monthly sea ice concentration
above 15 % for each month in the model and satellite data.

Moving the regional focus to the southern portion of the
domain, the El Niño–Southern Oscillation (ENSO) has been
shown to drive marine-resource-relevant variability in phy-
toplankton biomass in the Gulf of Mexico. Winters and
springs when an El Niño occurs are associated with increased
river discharge, stronger mixing, and changes in coastal cur-
rents, which tend to produce increased phytoplankton and
surface chlorophyll in the northern Gulf of Mexico, while
La Niña winters and springs show an opposite but weaker
response (Gomez et al., 2019). We conducted an analysis
similar to that of Gomez et al. (2019) to determine if the
model could reproduce this mode of variability. We com-
pared composite means of model surface chlorophyll dur-
ing winter (December–February) and the following spring
(March–May) in El Niño and La Niña years with compos-
ites calculated from the OC-CCI remote sensing estimates for
the same years. El Niño events were defined as those where
the 3-month running-average SST anomaly in the Niño-3.4
region, published as the ONI (Oceanic Niño Index) by the
NOAA Climate Prediction Center, exceeded 0.5 ◦C in De-
cember and remained positive in the following spring, and
La Niña years were defined as those where ONI was below
−0.5 ◦C in December and remained negative in the following
spring. During the period where both the model and OC-CCI
data are available (winter 1997–2019), six El Niño events
occurred (1998, 2005, 2010, 2015, 2016, 2019) and nine La
Niña events occurred (1999, 2000, 2001, 2006, 2008, 2009,
2011, 2012, 2018); note that the year of an event is defined
here as the year following the occurrence of the December
ENSO anomaly.

Finally, the area along the Louisiana–Texas Shelf with
bottom hypoxia (bottom dissolved oxygen concentration be-
low 2 mg L−1) was calculated from model daily mean bot-
tom oxygen and compared with data from the geostatis-
tical model of Matli et al. (2020) that combines observa-
tions, ocean model, and atmospheric data into a reliable es-
timate of hypoxic area. We integrated the model hypoxic
area over the same region as Matli et al. (2020) (between
89.512–94.605◦W and 28.219–29.717◦ N with a depth of
100 m or less). Model performance was assessed by compar-
ing monthly climatologies of hypoxic area averaged over the
years where the model and geostatistical estimates overlap
(1993–2017) and by comparing the time series of monthly
mean hypoxic volume for July (the normal peak month of
hypoxic area).

2.4.3 Computational implementation and scaling

To determine the feasibility of using the model to provide fu-
ture predictions and projections with information about un-
certainty to support living-marine-resource applications, we
assessed the total run time of the model relative to approx-
imate values needed to support application needs and rela-
tive to the number of processing elements (PEs) used. The
primary configuration of the model evaluated in this paper
was run using a 50× 50 layout, which divides the 775× 845
model grid across a 50× 50 grid of PEs, yielding a 16× 17
chunk of the model domain on a typical PE. The MOM6 land
masking feature, which eliminates PEs that do not contain
any ocean points, was enabled, resulting in only 1646 PEs
actually used (a savings of 34 %). To assess the scalability
of the model across other layouts, we determined the time
needed to run 1 year of simulation using layouts of 40× 40,
50× 50, 60× 60, and 70× 70 PEs (because the model do-
main is nearly square in terms of grid points, we only con-
sidered square decompositions). We focused on the total run
time of the model, including the time needed for initializa-
tion, running the main loop, and writing output, since this
time ultimately determines the computational tractability of
the model. Each 1-year timing simulation was repeated three
times, and the run times were averaged to obtain a more ac-
curate result.

We also assessed the benefit of a key feature of MOM6: the
ability to separate the time steps for the ocean barotropic and
baroclinic dynamics from the time step for tracer advection,
thermodynamics, mixing, and coupled ocean biogeochem-
istry. The “thermodynamics” time step for the latter set of
processes can be run with a significantly longer time interval
than the dynamics for computational speed. The basic model
configuration presented in this paper uses an 1800 s thermo-
dynamics time step and a 600 s baroclinic dynamics time
step. We assessed the benefits of this configuration in terms
of computational cost by repeating the 60× 60 and 70× 70
layout experiments discussed previously using a 600 s time
step for both thermodynamics and baroclinic dynamics, with
all other configuration options identical.

These timing simulations were run on NOAA’s “Gaea”
high-performance computing system using the c5 par-
tition that has two 64-core AMD EPYC 7002 series
CPUs per node. All model source code was compiled us-
ing “production” mode, which enables aggressive com-
piler optimizations. The model source code is archived at
https://doi.org/10.5281/zenodo.7893349 (Ross et al., 2023b).
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3 Results

3.1 Basin-wide indicators of model performance and
drivers of variability

The MOM6-COBALT-NWA12 model accurately simulates
the broad patterns of mean sea surface temperature through-
out the domain, with moderate biases that are most prominent
in the vicinity of the Gulf Stream (Figs. 2–3). These biases
include a region of warm SST concentrated along the shelf
break from Cape Hatteras to the Grand Banks and a region of
cool SST to the south. The strongest cool bias in the model
is found east of the Grand Banks where the North Atlantic
Current takes a northward turn, which is consistent with the
effects of an underestimation of the eastward extension of
the Gulf Stream and the northward turn of the current that
is often seen in ocean models across a wide range of spatial
resolutions (e.g., Bryan et al., 2007; Scaife et al., 2011; Sein
et al., 2017). The cool bias in MOM6-COBALT-NWA12 is
substantially less than the biases of over −5◦ found in 1/4◦

and 1/10◦ global climate models using a previous version
of MOM, although some of the warm biases near the coast
are greater (Saba et al., 2016). Outside of the western bound-
ary current region, the model SST bias is generally minor.
However, the SST biases are consistently negative between
−0.5 and 0 ◦C, and the overall area-weighted mean bias is
−0.23 ◦C compared to OISST. The spatial pattern of the
model SST bias is consistent across seasons (Fig. 3); how-
ever, the magnitude of the bias is higher in winter and spring
and lower in summer and autumn.

In the patterns of model mean sea surface salinity and bias
(Fig. 4), a positive surface salinity bias is present along the
shelf from Cape Hatteras to the Gulf of St Lawrence, in the
same region as the positive SST bias. The co-occurrence of
these biases resembles, but is much milder than, the biases
often seen in models with a poorly resolved Gulf Stream
(e.g., Saba et al., 2016). Elsewhere in the domain, the pat-
terns in the model bias suggest some errors in the volume
and placement of rivers or in the river plumes and coastal
currents that carry riverine freshwater. For example, model
salinity is biased low to the west of the Mississippi River and
high to the east. It is worth noting that at 1/12◦, the model
will not resolve the first Rossby radius of deformation along
the coastal ocean where the rivers discharge (Hallberg, 2013;
Piecuch et al., 2018), and this will limit the ability to capture
the dynamics of the river plumes. Overall, the area-weighted
model mean salinity is biased low by 0.27–0.28 units com-
pared to the observational and reanalysis datasets.

The model reproduces the broad patterns of winter mixed-
layer depths when compared to estimates derived from pro-
files (Fig. 5). The spatial correlation coefficient for the
mixed-layer depth based on a density difference from the
surface of 0.03 kg m−3 is high (0.94), and the mean bias is
negligible (0.90 m). The RMSE of 22.37 m is somewhat high
relative to the typical value; however, the high correlation

and low median absolute error of 8.02 m suggest the higher
RMSE may be primarily due to mismatches in deep mixed
layers. The model also has a tendency to predict winter mixed
layers that are too deep to the north of the Gulf Stream along
the shelf break, consistent with the temperature and salinity
biases shown previously.

Although the previous metrics suggest the presence of a
northward bias in the typical model Gulf Stream path, which
would bring excessively warm and salty water to the north-
east US shelf, both of the metrics for the position of the Gulf
Stream show that the average position is remarkably close to
observations (Fig. 6). The 15 ◦C isotherm of mean tempera-
ture at 200 m displays the canonical separation from the shelf
at Cape Hatteras in both the model and GLORYS12 reanaly-
sis (Fig. 6a). This metric actually suggests the presence of a
slight southward bias in the Gulf Stream path of the model,
particularly downstream of the separation, which is also seen
in the metric based on SSH variance (Fig. 6b).

At low frequencies, north–south shifts in the position of
the Gulf Stream are well simulated by the model, with a cor-
relation of 0.75 for the 25-month rolling-mean Gulf Stream
index (Fig. 6c). This simulation is particularly good consid-
ering that shifts in the Gulf Stream path are typically dif-
ficult to capture even in data-assimilative reanalysis prod-
ucts (Chi et al., 2018). The model accurately places the Gulf
Stream farther south than usual (indicated by a negative in-
dex) in the late 1990s with anomalously northern positions
in the early 1990s and 2000s. The modeled and observed
position was relatively constant during 2006–2013. Finally,
the model roughly reproduces the northward shift in the Gulf
Stream that occurred starting around 2014, although the shift
occurs faster in the model. At higher frequencies, fluctua-
tions in the model-simulated position only loosely track the
observed fluctuations associated with individual eddies and
meanders – the correlation between the model and observa-
tions decreases from 0.75 for the 25-month rolling averages
to 0.41 for the monthly values. However, this is not unex-
pected because the model boundaries are far from the region
of interest and the model does not assimilate observations
(i.e., eddies and meanders are present, but the formation and
evolution of individual observed eddies are not deterministi-
cally simulated).

The spatial pattern of mean sea surface height in the north-
west part of the model domain is consistent with Gulf Stream
biases and the good performance in other parts of the do-
main (Fig. 7). Mean SSH closely resembles the reanalysis
from the Loop Current through the Straits of Florida and up
to Cape Hatteras. Beyond Cape Hatteras, the SSH pattern in
the model has a weaker meridional gradient with more vari-
ability, the northwestern recirculation gyre (normally located
offshore of the southern Mid-Atlantic Bight and visible as
a region of low SSH) appears to be absent, and the Gulf
Stream does not extend as strongly to the east and weakly
curves to the north along the Grand Banks. These biases are
consistent with the previous results: although the model sim-
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Figure 2. The 1993–2019 mean sea surface temperature in the model (a) compared with the OISST (b) and GLORYS12 (d) datasets, and
the difference between the model and the datasets (c, e).

Figure 3. Difference between the 1993–2019 seasonal mean sea
surface temperature in the model and the OISST dataset.

ulates the mean of and low-frequency variability in the Gulf
Stream path near the separation point well, the weaker and
more variable extension, a weaker northwestern turn along

the Grand Banks, and absent recirculation gyre combine to
produce temperature and salinity biases with opposing pat-
terns north and south of the mean Gulf Stream. Over the re-
gion shown in Fig. 7, the correlation between the model and
the GLORYS12 reanalysis is high (0.97) and the errors are
low (RMSE of 8 cm and median absolute error of 3 cm). The
mean bias is also low (3 cm), which is expected given that
the model is forced by the reanalysis at the boundaries.

Semidiurnal and diurnal tides are well simulated in the
model, with amplitude RMSEs that are low compared to the
typical amplitude (RMSE of 5.44 cm for the semidiurnal M2
amplitude and 1.29 cm for the diurnal K1 amplitude) and
high spatial correlations (0.95–0.96) (Figs. 8–9). Amplitude
errors for the M2 tide are highest in the Gulf of Maine and
Gulf of St Lawrence (Fig. 8). In the Gulf of Maine, the model
M2 amplitude is too low in the Bay of Fundy and too high in
the southwest portion of the gulf. M2 amplitudes are too high
throughout the coastal Gulf of St Lawrence, although the
central amphidrome (tidal node) is well placed in the model.
The contour lines of the model M2 phase in the Caribbean
Sea show a patchwork pattern. A closer look revealed a pat-
tern of tidal amplitude similar to the surface expression of in-
ternal tides generated along the Windward Islands and in the
passage between Puerto Rico and the Dominican Republic
found by Zaron (2019) (not shown). For the diurnal K1 tide,
the amplitude is also too high in the Gulf of St Lawrence and
along the majority of the US East Coast and in the western
Gulf of Mexico (Fig. 9). The phase of the model K1 tide is
shifted by about an hour, particularly in the interior of the
domain away from the boundaries.
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Figure 4. The 1993–2019 mean sea surface salinity in the model (a) compared with the regional climatologies (b) and GLORYS12 (d)
datasets, and the difference between the model and the datasets (c, e).

Figure 5. Winter (January–March) mixed-layer depth in the model (a) and the observation-based climatology of de Boyer Montégut
(2004) (b), and the difference between the two (c).

Shifting to biogeochemical patterns, the simulated surface
nitrate (Fig. 10) and phosphate (Fig. 11) exhibit a robust
large-scale nutrient drawdown from winter into the summer
months. Winter nitrate, however, has a moderate high bias
in shelf-adjacent waters in the northeastern part of the do-
main, aligned approximately with high MLD biases in this
region (Fig. 5). This winter high bias delays the depletion
of nitrate in the spring. The model and observations largely
converge in the summer before high biases tend to re-emerge
in the autumn with the onset of deeper mixing. Phosphate
shows a similar winter/spring high bias to nitrate, as would
be expected from a bias rooted in overly deep mixed lay-
ers along the shelf break. In contrast with nitrate, both the

modeled phosphate and the observed phosphate remain ele-
vated in summer months in the coastal waters of the north-
east United States and Canada. Modeled phosphate, however,
is somewhat lower than that observed. In the Gulf of Mex-
ico, simulated summer phosphate surpluses are not as high as
those that WOA suggests. The proximity of observed highs
to some of the larger river systems in the southern Gulf of
Mexico (e.g., Pánuco, Usumacinta, Coco) and Central and
South America (e.g., Magdalena, Orinoco) suggests that part
of this misfit may be attributable to uncertain river inputs in
this region. In addition to the limited availability of river in-
put data, ocean biogeochemical observations in the southern
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Figure 6. Evaluation of model Gulf Stream position based on the 15 ◦C isotherm at 200 m (a) and the latitude of maximum sea surface height
variance (b) and an index based on anomalies in the latitude of maximum SSH variance (c).

Figure 7. The 1993–2019 mean sea surface height in the model (a)
and the GLORYS12 reanalysis (b).

Gulf of Mexico are also sparse (Estrada-Allis et al., 2020),
which introduces additional uncertainty into the comparison.

The mean seasonal patterns of surface chl a are simulated
well by the model, despite some regional biases (Figs. 12–
13). Spatial correlations (of log10-transformed chlorophyll)
between the model and OC-CCI remote sensing estimates
range from 0.83 in winter to 0.89 in autumn, and RMSEs in
log10 units range from 0.21 in winter to 0.26 in summer, cor-
responding to a factor of 1.6–2.0 error. The chlorophyll min-

imum within the oligotrophic subtropical gyre is consistent
with the satellite estimates, although chlorophyll is slightly
higher than observed at the northern and southern limits of
the gyre. Along the coast, in the northeast USA and Gulf of
St Lawrence (Fig. 13a–h), seasonal patterns and cross-shore
gradients are reproduced reasonably well, including the con-
sistent chlorophyll hotspot on Georges Bank associated with
sustained tidal mixing (Franks and Chen, 1996; Hu et al.,
2008), the summer–autumn pattern of lower chlorophyll in
the central Gulf of Maine ringed by higher chlorophyll along
the coasts, high chlorophyll concentration in the lower St
Lawrence Estuary and southern Gulf of St Lawrence, and
a chlorophyll maximum that shifts from the spring in the
Gulf of St Lawrence to summer in the estuary (Laliberté
and Larouche, 2023). The correlation between the model and
OC-CCI climatologies is highest in summer and autumn and
lowest in winter and spring when the model simulates lower
chlorophyll than observed in coastal regions. Spatial and sea-
sonal patterns of surface chlorophyll are also simulated well
in the Gulf of Mexico (Fig. 13i–p), and the regional skill
metrics are consistent across all four seasons. Although sea-
sonal and spatial patterns are reproduced well, in many of
the coastal regions, including the northern Gulf Coast and
the northeast USA and Gulf of St Lawrence, modeled sur-
face chlorophyll concentrations are substantially lower than
the satellite estimates. However, we note that satellite-based
chlorophyll estimates are less reliable and more difficult to
interpret in these turbid nearshore environments (Schofield
et al., 2004; Dierssen, 2010), and satellite estimates in the
northern regions of the model domain, including the Gulf of
St Lawrence, are also affected by sea ice and low sun angles
in the winter that limit the availability of data (Laliberté and
Larouche, 2023).
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Figure 8. Semidiurnal M2 tidal amplitude and phase estimated from hourly sea level output from the model (a) compared with the reference
TPXO9 tidal model data (b) and the difference between the model and reference M2 amplitude (c). The phase in panels (a)–(b) is indicated
by a differently colored line for each hour.

Figure 9. Diurnal K1 tidal amplitude and phase estimated from hourly sea level output from the model (a) compared with the reference
TPXO9 tidal model data (b) and the difference between the model and reference K1 amplitude (c). The phase in panels (a)–(b) is indicated
by a differently colored line for each hour.

Looking up the food web, the simulated seasonal mean
mesozooplankton biomass (Fig. 14) also shows seasonal and
spatial gradients consistent with net data, though values in
the South Atlantic Bight are higher than the relatively sparse
observations in the region suggest. On average, the model
is biased high even after adjusting for undersampling of the
full mesozooplankton community by a factor of 2. However,
as discussed in the Methods, this correction still neglects es-
capement by large mesozooplankton and potential contribu-
tions by undersampled gelatinous components. In the off-
shore waters of the subtropical gyre, model mesozooplank-
ton biomass generally falls to around 1–3 mg C m−3 (200–
600 mg C m−2). This is considerably larger than the 330 µm
mesh net estimates included in the COPEPOD database but
more comparable to smaller mesh sampling of the Bermuda
Atlantic Time-Series Study and Hawaii Ocean Time-series
Project (e.g., Roman et al., 2001).

Moving to the carbon system dynamics, the model annual
average surface pCO2 is a close match to the SOCAT and
data-derived products (Fig. 15a–f). The main bias relative

to both observation-based products is higher modeled pCO2
in the subtropical gyre, a bias on the order of 10 %. The
model also appears to have biases in the Gulf of St Lawrence
and off the coast of Newfoundland and Labrador; however,
the observation-based products contain fewer observations in
this region and may be affected by seasonal ice cover (Land-
schützer et al., 2020a). Comparing the seasonal variability
in pCO2 in the model with the machine-learning-based esti-
mate of Landschützer et al. (2020a) (Fig. 15g–i), the model
has higher variability along the coast and south of the Gulf
Stream path and lower variability in the southern Labrador
Sea in the northeast corner of the model domain. The bias
toward a higher seasonal cycle amplitude was also found in
a 0.5◦ global simulation with COBALT by Roobaert et al.
(2022) and is likely attributable to the underestimation of the
seasonality of non-thermal processes (i.e., biological update)
in spring–summer and winter DIC mixing/supply in autumn–
winter.

Annual mean patterns in simulated alkalinity and dis-
solved inorganic carbon (DIC) generally agree with
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Figure 10. Comparison of model seasonal mean surface nitrate (a, d, g, j) with the World Ocean Atlas (b, e, h, k) and the difference between
the datasets (c, f, i, l).

Figure 11. Comparison of model seasonal mean surface phosphate (a, d, g, j) with the World Ocean Atlas (b, e, h, k) and the difference
between the datasets (c, f, i, l).

observation-based climatologies, with spatial correlations of
0.93 and 0.87, respectively, and mean biases that are minor
compared to the range of values found across the domain
(Fig. 16a–f). The primary alkalinity bias is a positive bias in
the northeast United States and Canada, which is consistent
with overly prominent high-alkalinity/high-DIC Gulf Stream
waters. A low-alkalinity bias is evident in the southern parts
of the model domain, particularly in the vicinity of large
freshwater outputs in Central and South America. This re-
gion is associated with a freshwater bias (Fig. 4), suggesting

that the bias may arise from overly prominent low-alkalinity
freshwater fluxes in this region. However, the observations
in this region are highly uncertain: the GLODAPv2 dataset,
which the Jiang et al. (2022) product sources are from, con-
tains almost no observations in the Caribbean and Gulf of
Mexico (Lauvset et al., 2021). The model DIC biases have a
similar spatial pattern to the alkalinity biases, which is con-
sistent with these properties being driven by the same pro-
cesses, although the magnitude of the DIC biases is lower.
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Figure 12. Evaluation of model seasonal mean surface chl a (a, d,
g, j) compared with OC-CCI satellite remote sensing estimates (b,
e, h, k) and the difference between the datasets (c, f, i, l). Skill met-
rics were calculated for log10-transformed chlorophyll. The color
scale for the different panels is on a logarithmic scale except within
±0.1 mg m−3, where it is linear.

The modeled and observed surface aragonite saturation
exhibits a similar negative gradient with latitude (Fig. 16g–
i), and the model is highly correlated with the observations
(r = 0.97). While none of the mean values at the surface fall
below a saturation state and only a few grid cells in nearshore
estuarine areas fall below the value of 1.5 that is considered
suboptimal (Siedlecki et al., 2021), much of the northeastern
coast of the United States and Canadian coastal waters falls
below 2. In the high-alkalinity waters of the tropical North
Atlantic, by contrast, the saturation state is often > 4. The
largest discrepancies in the model occur in the Mid-Atlantic
Bight, which tends to have a greater component of high-�ar
tropical water and is consistent with the stronger Gulf Stream
influence noted previously, and in the Gulf of Mexico, where
the observations may not sample the nearshore region of a
low-saturation state.

3.2 Relevant regional features and biogeochemical
responses

As described in the Introduction, one of the challenges for
the intended applications of the modeling system described
herein is to connect large-scale ocean dynamics to regional
responses. This requires the model to capture both the large-
scale patterns (described in the preceding section) and more
local marine resource relevant dynamics. One of the largest
and most impactful changes in recent decades has been the
substantial warming in the northwest Atlantic Ocean, par-
ticularly along the northeast US coast. The model is largely
able to simulate the observed linear SST trends over 2005–
2019, with an overall spatial correlation of 0.90–0.91 and
negligible mean bias (Fig. 17). Both OISST and the GLO-
RYS12 reanalysis show a broad pattern of surface cooling at
the southern edge of the subpolar gyre in the northwestern
corner of the domain and surface warming north of the Gulf
Stream along the continental shelf and shelf break, which ap-
pears to be consistent with the predicted effect of a weak-
ening Atlantic Meridional Overturning Circulation (Caesar
et al., 2018), and this pattern is reproduced well in the model.
However, there is some mismatch between the modeled and
observed trends at fine scales along the shelf: the model tem-
perature increase is too large along the Mid-Atlantic Bight
and too small (although still positive) in the Gulf of Maine
and Scotian Shelf and offshore of these regions beyond the
shelf break.

The model reliably simulates most aspects of the seasonal
variation in temperature and mixing in the four northeast US
EPUs (Fig. 18). The most notable deficiency in the model
stems from the warm surface temperature bias in winter and
spring (seen in Fig. 3), which extends throughout the mixed
layer of each EPU. This bias results in an absence of the cool
intermediate layer centered at about 60 m typically seen in
summer. Despite this bias, the depth of the winter and spring
mixing is generally consistent with the reanalysis climatol-
ogy, suggesting the surface heat forcing as a possible cause
of the bias.

The interannual bottom-temperature variability within the
EPUs is simulated well by the model, although long-term
trends are missed in some regions (Fig. 19). The correla-
tion between the modeled and observed or reanalysis anoma-
lies is highest in Georges Bank, where strong mixing cou-
ples the bottom-temperature variability with the atmospheric
forcing, and the Mid-Atlantic Bight, and it is lowest in the
Gulf of Maine. Observations and reanalysis data from all
EPUs show a general pattern of a sharp cold snap in 2004
that was associated with deep winter mixing (Taylor and
Mountain, 2009) followed by a strong warming trend. Al-
though the model reproduces these trends and the superim-
posed variability to some extent, it substantially underes-
timates the warming trend in the EPUs covering the Gulf
of Maine and southwestern Scotian Shelf. These underesti-
mated bottom trends are consistent with the underestimated
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Figure 13. A close-up of Fig. 12 for the northeast USA (a–h) and Gulf of Mexico (i–p). Skill metrics were calculated for log10-transformed
chlorophyll.

SST trends in these regions (Fig. 17). On the other hand, the
observed and reanalysis time series began to diverge around
2010, with the reanalysis warming faster than the observa-
tions, and the model is generally closer to the observations
than the reanalysis during this period.

The mean and range of modeled temperature and salinity
at 150–200 m depth in the Gulf of Maine Northeast Chan-
nel are broadly consistent with the data from CTD and buoy
observations and the GLORYS12 reanalysis (Fig. 20a). Rel-
ative to the reanalysis, the average model salinity is too high
by 0.12 and the average model temperature is too warm by
0.25 ◦C. Compared to the analysis of Saba et al. (2016), this
warm bias is less than the warm bias of the 1/10◦ CM2.6 cli-
mate model and substantially less than the warm bias of sev-
eral degrees found in the 1/4◦ CM2.5 climate model, which
highlights the benefits of high-resolution downscaling. Al-
though the reanalysis, CTD, and moored-buoy data prod-
ucts all have slightly different means and ranges of temper-
ature and salinity, all three products and the model show the
same mixing of predominantly Warm Slope Water (WSW)
and Labrador Slope Water (LSW) with a minor addition of
Scotian Shelf Water. Compared to all three data products,

however, the model temperature and salinity variability is
confined within a smaller range. The model has relatively
poor skill at simulating the time series of the mixing between
these water masses (Fig. 20b–c); over the full 1993–2019
time period, the correlation between the model and data-
derived water masses ranges from 0.30 to 0.43. Compared to
the mooring-derived water masses, which are only available
from 2004–2017, the model has much higher correlations of
0.82 for both LSW and WSW. This difference in correlation
is due to the model missing several prominent fluctuations in
water masses during the early part of the time series, includ-
ing the significant drop in WSW in 1998, and accurately sim-
ulating many of the more recent fluctuations, including the
second drop in WSW in 2007–2008 and the subsequent re-
bound. All three data products show this rebound and a con-
tinued increase in WSW persisting through 2019, although
the products diverge from each other to some extent during
this time. The model also simulates some increase in WSW
and decrease in LSW after 2010, although the changes are
less pronounced than in any of the data products.

Model bottom temperatures in the Mid-Atlantic Bight
cold-pool region are biased warm by 0.70 ◦C on average
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Figure 14. The 0–200 m average mesozooplankton biomass climatology along the US East Coast (a–h) and in the Gulf of Mexico (i–p).
Observations from the COPEPOD dataset have been adjusted for approximate undersampling by scaling by a factor of 2.

(Fig. 21a–c), which is consistent with the warm bias seen
in SST in this region. The model broadly simulates the spa-
tial pattern of temperature associated with the cold pool
with a spatial correlation coefficient between the model and
GLORYS12 reanalysis of 0.88. Year-to-year variability in
temperature anomalies associated with the cold pool, as in-
dicated by the index of du Pontavice et al. (2022) based
on June–September average bottom-temperature anomalies,
also tracks the reanalysis data reasonably well (correlation
coefficient between time series of 0.57) considering that this
feature is typically challenging to model. This correlation
is lower than the correlation of 0.85 between survey and
model annual average bottom-temperature anomalies across
the Mid-Atlantic Bight EPU (Fig. 19d), which is consistent
with higher model skill during winter and spring when the
water column is well mixed and bottom temperatures are
connected to atmospheric forcing.

The model reliably simulates the spatial and temporal evo-
lution of sea ice in the northwestern portion of the model do-
main (Figs. 22–23). The model has a modest bias toward ear-
lier freezing and melting (Fig. 22), with more extensive sea

ice coverage than observed in December and January and less
in April. The low bias in April may be due to the omission
of open boundary conditions for sea ice in the model, which
does not allow the transportation of sea ice by the Labrador
Current through the northern model boundary and into the
domain (note that a low bias is also present near the boundary
in January–March; Fig. 22f, i, l). The time series of monthly
sea ice extent in the Gulf of St Lawrence (Fig. 23) shows that
the model captures nearly all of the year-to-year variability
in sea ice coverage in the gulf, with correlation coefficients
between 0.94 in January and 0.96 in February. The satellite
data show an abrupt shift toward lower and more variable ice
coverage beginning around 1995, and this shift is correctly
simulated by the model (although the model simulation only
began in 1993, and thus it is not certain whether the model
reproduces the relatively stable period before 1995).

The model reproduces the primary response of surface
chlorophyll in the Gulf of Mexico to both the El Niño and
the La Niña phases of ENSO, although the magnitude of the
model response is not as large (Fig. 24a–d). In the satellite
observations, surface chlorophyll is higher than normal along
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Figure 15. Modeled (left) and observed (center) surface pCO2 spatial distributions (in µatm) and model bias (right) on annual average (a–f)
and seasonal (g–i) timescales. The seasonal timescale evaluation is performed on the seasonal amplitude, which is expressed as the root mean
square of the monthly climatology pCO2 anomalies (rms, in µatm). The model evaluation is performed directly against pCO2 observations
derived from the Surface Ocean CO2 Atlas database version 2021 (SOCATv2021; Bakker et al., 2016) and against a pCO2 data product
generated from the SOCAT observation by a two-step neural network interpolation (data product; Landschützer et al., 2020a).

the majority of the northern Gulf of Mexico coast during the
winter and spring seasons of an El Niño event (Fig. 24a–d),
although, as noted before, satellite estimates should be in-
terpreted with caution in this turbid nearshore region. The
model simulates a positive chlorophyll response offshore of
the Mississippi River delta and the western Gulf of Mex-
ico but fails to simulate the enhanced chlorophyll along the
West Florida Shelf. In agreement with Gomez et al. (2019),
the observed chlorophyll response during a La Niña win-
ter and spring is opposite and slightly weaker compared to
the response during El Niño (Fig. 24e–h). The model and

remote sensing datasets generally agree that chlorophyll is
lower than average over the majority of the region during La
Niña winters. The model also reproduces increased surface
chlorophyll near the mouth of the Mississippi River and de-
creased chlorophyll along the Louisiana–Texas Shelf during
La Niña springs. However, the model again fails to simulate
low-chlorophyll anomalies along the West Florida Shelf and
southeast US coast. Across the region plotted in Fig. 24, the
rank correlation between the model and satellite anomalies is
slightly higher in spring than in winter for both El Niño and
La Niña years.
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Figure 16. Mean surface alkalinity (a–c), dissolved inorganic carbon (d–f), and aragonite saturation state (g–i) in the model (a, d, g) and the
observation-derived climatology (b, e, h) and showing the difference between the model and observations (c, f, i).

Finally, bottom hypoxia along the Louisiana–Texas Shelf
is simulated reasonably well by the model (Fig. 25), es-
pecially given the small scale over which this hypoxia oc-
curs, the omission of extremely shallow areas in the model
bathymetry (which has a minimum depth of 10 m), and
the basic representation of coastal benthic processes in
COBALT. The seasonal variation in the hypoxic area in
the model, peaking in July, is consistent with the area esti-
mated from cruise observations and other data by Matli et al.
(2020) during the months of May–September (Fig. 25a). In
all months, the model hypoxic area is less than the observed
area. During July, the model underpredicts the hypoxic area
by 3962 km2 on average, or about 25 % of the observed area
(Fig. 25b). About 1/4 of the interannual variability is cor-
rectly predicted by the model (r = 0.51).

3.3 Computational performance

In Fig. 26, we evaluate the total run time of the model
with several choices of grid decomposition to determine

whether the computational cost of the model is low enough
to enable running the large ensembles of long simulations
that are needed to support the intended applications. Using
the 40× 40 decomposition, which distributes the 775× 845
model grid onto a 40× 40 grid of processing elements (PEs),
the model can run 1 year of simulation in about 9 h of wall
clock time. As the number of PEs is increased, the wall clock
time is reduced; however, due to parts of the model that are
run in serial (e.g., we used a single process to write the model
output, although the option exists to do this in parallel) and
inefficiencies in parts that are run in parallel, the total compu-
tational cost increases with the number of PEs. The total cost
of the 50× 50 case is slightly less than 1.25 times the cost of
the 40× 40 case, and the cost of the 60× 60 case is slightly
more than 1.25 times the cost; both are reasonable trade-offs
between run time and computational cost. The 70× 70 case
is less efficient, with a total cost of more than 1.5 times the
cost of the 40× 40 case. Despite the increased total compu-
tational costs of the larger PE layouts, these layouts support
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Figure 17. The 2005–2019 sea surface temperature trends from the model (a) compared with trends from the OISST (b) and GLORYS12 (d)
datasets and the difference between the model and the datasets (c, e).

Figure 18. Vertical profiles of seasonal temperature climatologies in four different northeast US ecological production units computed from
model and reanalysis data.

run times fast enough to meet our informal performance cri-
terion of 3 simulation years per day. All layouts except the
40× 40 case exceed this threshold, which allows them to run
nearly a century of continuous simulation in 1 month (as-
suming no cluster queue wait time). Furthermore, the scaling
efficiency of this tracer-heavy model is better than seen in

MOM6 models without coupled biogeochemistry where the
computationally expensive 2-dimensional barotropic solver
generally ceases to scale with fewer than 15× 15 points per
PE. The 40 additional tracers added by the BGC component
result in more time spent in the tracer routines, which scale
fairly well as the number of points per PE is reduced (and to-
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Figure 19. Annual average bottom-temperature anomalies in four different northeast US ecological production units computed from model,
reanalysis, and observed data.

Figure 20. (a) Monthly potential temperature and salinity between 150–200 m within the Northeast Channel compared with known water
masses. (b–c) Time series of the composition of the water between 150–200 m within the Northeast Channel in terms of Labrador Slope
Water (b) and Warm Slope Water (c). Each correlation in parentheses gives the correlation between the model time series and the given
observation dataset.

tal PEs are increased), and produce a meaningful reduction in
run time even though the time spent in the barotropic solver
remains roughly constant.

A key feature of MOM6 that improves the computational
economy is the ability to efficiently integrate the thermo-
dynamics and tracer processes over a longer time step than
the baroclinic and barotropic dynamics time steps that are
highly limited by stability concerns. Because the coupled

COBALT biogeochemical model integration is called during
the thermodynamics time step and COBALT introduces 40
new tracers that must be advected and diffused by the ocean
model component during the thermodynamics time step, tak-
ing longer thermodynamics time steps can substantially re-
duce the total computational cost of the model. In the present
configuration, we use an 1800 s thermodynamics time step,
which is 3 times longer than the 600 s baroclinic time step.
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Figure 21. Bottom temperature from the model (a) and du Pontavice et al. (2022) (b) in the cold-pool region averaged over June–September
and the difference between the two datasets (c). (d) Comparison of the model cold-pool index, based on bottom-temperature anomalies, with
the same index calculated from a regional ocean model (before 1993) and the GLORYS reanalysis (1993–2019) data by du Pontavice et al.
(2022).

To evaluate the cost savings of this feature, we ran two ex-
periments with a 600 s thermodynamics time step and plotted
the run times as empty shapes in Fig. 26. For a given grid de-
composition, an 1800 s thermodynamics time-step results in
a decrease by a factor of 2 in the total run time compared to a
600 s thermodynamics step. MOM6 is also computationally
efficient at handling tracers in general: using the 1800 s ther-
modynamics step, the inclusion of coupled COBALT biogeo-
chemistry and its 40 tracers only results in an increase about
2.5 times the computational cost (not shown).

4 Discussion

MOM6-COBALT-NWA12 exhibited good performance in
simulating a wide range of ecosystem-relevant physical and
biogeochemical diagnostics while also satisfying computa-
tional performance constraints. Long-term means and sea-
sonal climatologies were simulated well for nearly all met-
rics, with the main biases across quantities often related to
challenges in simulating the Gulf Stream. The 1/12◦ reso-
lution used here is only slightly higher than the 1/10◦ reso-
lution considered to be a necessary but not sufficient condi-
tion for resolving the Gulf Stream separation and path (Chas-
signet and Marshall, 2008). A version of the model with a
highly refined resolution, on the order of 1/25◦ or 1/50◦,
may improve the Gulf Stream path and variability and re-

duce the biases, as has been found in studies of other models
on similar domains (Chassignet and Xu, 2017, 2021). How-
ever, such increases in resolution would also greatly increase
the computational costs. An 8-fold increase in computational
cost is generally incurred for each doubling of the horizon-
tal grid resolution (4 times for the increase in the number of
grid cells and 2 times for the required time step decreases
to maintain numerical stability, although in MOM6 the ther-
modynamics time step need not be decreased with increas-
ing resolution and this factor may be more favorable). We
are currently running higher-resolution simulations to better
quantify the model skill and computational cost trade-offs
associated with enhanced resolution in the NWA12 domain.

Metrics that evaluate the model on the basis of interan-
nual to decadal variability, rather than long-term means, also
showed significant skill, particularly for lower-frequency
variations, along with some errors possibly related to the
Gulf Stream bias. Variability in the Gulf Stream position,
bottom temperatures in the northeast US EPUs, sea ice in the
Gulf of St Lawrence, and sea surface temperature trends all
compared reasonably well with the respective observed time
series. However, the model slightly underestimated recent
surface warming in the Gulf of Maine and largely failed to
simulate the recent bottom warming, and the composition of
deep water in the Northeast Channel was only moderately co-
herent with observations during the full 1993–2019 time pe-
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Figure 22. The 1993–2019 monthly climatology of sea ice concentration from the model (left panels) and a satellite observation dataset
(Cavalieri et al., 1996) (middle panels) and the difference between the two datasets (right panels).

riod, though agreement with buoy data over the last 15 years
was stronger. Some of the lower performance in this region
may be caused by unpredictable stochastic variability, such
as warm-core eddies shed from the Gulf Stream that bring
warm and salty water to the shelf and coast (Du et al., 2021;
Gawarkiewicz et al., 2019) and eddies propagating from the
tail of the Grand Banks (Brickman et al., 2018). While eddies
are present at 1/12◦ resolution, the formation and evolution
of individual eddies are not deterministically simulated with-
out data assimilation. This is consistent with the lower corre-
lation with observations for the monthly Gulf Stream index
compared to the 25-month rolling mean.

During development of the model, we found several pa-
rameters that exerted a strong influence over the physical
properties of the model simulation. First, the separation point
and path of the Gulf Stream were influenced by the bi-
harmonic viscosity parameters: higher viscosity produced a
later, northerly separation, and lower viscosity produced an
earlier, southerly separation. This result is consistent with nu-
merous other studies using other models (e.g., Bryan et al.,
2007; Chassignet and Garaffo, 2001). Our biharmonic vis-

cosity parameterization, the maximum of a velocity scale of
1 cm s−1 times the grid spacing cubed and a Smagorinsky
viscosity with a coefficient of 0.015, results in a typical vis-
cosity of about 3.8× 109 m4 s−1 at the latitude of Cape Hat-
teras. The viscosity cannot be substantially reduced at this
resolution without introducing grid-scale noise and instabil-
ities or increased without shifting the Gulf Stream separa-
tion northward and exacerbating the warm-temperature bi-
ases along the shelf. Compared to other studies, the viscosity
in the MOM6-COBALT-NWA12 is lower than the viscos-
ity in the 0.1◦ ocean resolution models of Li et al. (2022)
and Sasaki et al. (2020). The velocity scale of 1 cm s−1 is
the same as the 1/4◦ and 1/2◦ models of Adcroft et al.
(2019), although A19 used a higher Smagorinsky coefficient
of 0.06 and included an additional Laplacian viscosity in re-
gions of the 1/2◦ model where the resolution was coarser
than the first baroclinic deformation radius. Chassignet and
Garaffo (2001) and Chassignet and Xu (2017) also used the
same biharmonic velocity scale; however, Chassignet and
Garaffo (2001) found that a small biharmonic viscosity alone
produced an early separation of the Gulf Stream and could
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Figure 23. Time series of the extent of sea ice within the Gulf of St Lawrence during January (a), February (b), and March (c) from the
model and the satellite observation dataset (Cavalieri et al., 1996).

only obtain an accurate simulation with Laplacian viscos-
ity added everywhere in the model domain. Aside from vis-
cosity, MOM6-COBALT-NWA12 has other differences from
these models, including explicit tides and z∗ vertical coordi-
nates rather than isopycnal or hybrid coordinates, and iden-
tifying which factors contribute to obtaining a satisfactory
simulation with lower viscosity is left for future work. This
line of research is likely to benefit from the flexible vertical
coordinate capability of MOM6.

Second, the front length specified in the parameterization
for restratification by submesoscale eddies has a strong con-
trol over the mixed-layer depth in MOM6, as noted by Ad-
croft et al. (2019). The front length of 1500 m used here is
greater than the 500 m used in Adcroft et al. (2019), which re-
sults in a decreased restratification effect. The front length is
also greater than suggested by the scaling developed by Bod-
ner et al. (2023), which predicts front lengths shorter than
even 500 m throughout most of the NWA12 model domain.
Shorter front lengths would decrease mixed-layer depths,
which would be beneficial in some regions of the domain
that have a bias toward deeper winter mixed layers (Fig. 5).
However, the reduced mixing caused by a stronger restratifi-
cation effect would have other impacts, including increasing
the bottom-temperature bias and reducing the extent of the
cold pool in the Mid-Atlantic Bight (Fig. 21). The chosen
value of 1500 m is thus a reasonable compromise.

Finally, the coefficient used in the scalar approximation
of the effect of tidal self-attraction and loading (SAL) has

a strong control on tidal range in the model, particularly in
the Gulf of Maine and Gulf of St Lawrence. In this scalar
SAL approximation, the effect of SAL is equal to a single,
constant coefficient times the local model free-surface eleva-
tion. The coefficient value of 0.01 used in this study is sig-
nificantly lower than values ranging from 0.085–0.12 com-
monly used in global tide models (Accad and Pekeris, 1978;
Ray, 1998; Stepanov and Hughes, 2004). In the NWA12 re-
gional model, increasing the SAL coefficient increases M2
amplitude in the Gulf of St Lawrence and decreases it in the
southwest Gulf of Maine. Increasing SAL above 0.01 would
thus reduce the Gulf of Maine M2 amplitude bias in the cur-
rent model but increase it in the Gulf of St Lawrence (Fig. 8).
The value of 0.01 is a compromise between these two biases
and the effects they have on regional hydrodynamics. In re-
ality the effect of SAL is not constant but varies as a func-
tion of the tidal spatial scales (which in turn vary with water
depth) and other factors (Ray, 1998; Stepanov and Hughes,
2004), and modeling studies have found that the coefficient
should be smaller than the typical 0.085–0.12 over most of
the Atlantic Ocean and particularly in the Gulf of Mexico and
along the US East Coast (Irazoqui Apecechea et al., 2017;
Stepanov and Hughes, 2004). We consider the scalar value of
0.01 to produce results that are sufficiently accurate for the
intended use of the current version of the model, but separate
ongoing studies may explore the effect of more sophisticated
models of SAL and the impacts on coastal hydrodynamics.
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Figure 24. Winter and spring surface chlorophyll a anomalies dur-
ing El Niño years in the model (a, c) and satellite estimates (b,
d), compared with the same during La Niña years (e–h). To dis-
play the wide range of chl a anomalies, values within±0.1 mg m−3

are shaded on a linear scale, while values outside of this range are
shaded on a logarithmic scale. Annotated correlation values give the
Spearman rank correlation between the model and satellite anoma-
lies over the plotted region.

5 Conclusions

As a first step toward the goal of providing information about
historical ocean-ecosystem conditions and possible future
changes that could support living-marine-resource manage-
ment and applications, we developed a regional model of
ocean dynamics and biogeochemistry for the northwest At-

Figure 25. Monthly climatologies of hypoxic area (area with a July
mean bottom oxygen concentration below 2 mg L−1) over the LA–
TX Shelf from the model and geostatistical estimates from Matli
et al. (2020) (a) and time series of July mean hypoxic area from the
model and Matli et al. (2020) (b). Gray shading in (b) denotes the
95 % confidence interval for the Matli et al. (2020) data.

Figure 26. Total wall clock time needed to run 1 year of model sim-
ulation as a function of the number of processing elements (PEs).
Shapes and colors indicate the grid of PEs onto which the model do-
main is distributed before eliminating all-land PEs. Diagonal lines
are lines of constant computational cost (processes× time) relative
to the 40× 40 case. The two empty shapes are simulations with the
thermodynamics time step set to the same as the dynamics time step.
Both plot axes are on a logarithmic scale.
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lantic Ocean. Comparison of a model historical simulation
with data from reanalysis and observations showed that the
model generally performed well at simulating both historical
mean conditions and significant trends and variability with
minimal drift. This suggests that the model can provide the
accurate information needed for many applications; notably,
several of the evaluation metrics in this paper and the ob-
servations for them were taken directly from reports used to
inform fishery managers. However, more detailed skill eval-
uations specific to each intended application will likely be
necessary to better understand the reliability of and uncer-
tainty in the model simulations.

Not all aspects of the model simulation reproduced the ob-
servations as well as might be desired. Interannual variability
of fine-scale features, including the Mid-Atlantic Bight cold
pool and the area of hypoxia along the LA–TX Shelf, were
simulated with correlation coefficients around 0.5, which is
often considered a lower bound for useful prediction skill
(Murphy and Epstein, 1989). Recent warming at the surface
and bottom of the Gulf of Maine was also underestimated.
Future model simulations focused more specifically on these
regions may benefit from employing additional downscaling
by nesting a 1/25◦ or higher local model within the 1/12◦

regional NWA12 domain to obtain some of the benefits of
higher resolution with a lower computational cost. Adjust-
ments to the spacing of the vertical coordinates to enhance
resolution in coastal areas or switching from the z level to an
adaptive hybrid coordinate that is locally terrain following
may also improve the simulation of these features. Nested
local domains would also allow adjusting the model parame-
ters, such as the mixed-layer eddy front length and tidal self-
attraction and loading coefficient, to optimal values for each
region. Furthermore, as it was not possible in this paper to
compare the model with every relevant metric and dataset
within the entire NWA12 domain, development of local do-
mains could focus on a more comprehensive evaluation for
the local area. However, unless two-way nesting was em-
ployed, these smaller, nested domains would limit the ap-
plicability for large-scale issues like cross-boundary shifts in
species distributions that may occur under climate change,
and a proliferation of different models could introduce con-
fusion and complexity and complicate development of the
core model components.

Although historical model simulations can provide useful
information for LMR applications, for example by recon-
structing historical conditions when observations were sparse
(du Pontavice et al., 2022), forecasts and projections of future
conditions are essential for managing and adapting to the im-
pacts of climate variability and change on LMRs (Tommasi
et al., 2017b). Interdisciplinary research has repeatedly em-
phasized that forecast users benefit from being provided with
information about forecast accuracy and uncertainty (e.g.,
Ramos et al., 2013; Roulston et al., 2006). However, provid-
ing reliable uncertainty information generally requires run-
ning long ensemble simulations, and the imposing computa-
tional costs of these simulations have limited the number of
cases where this information is provided (Lewis et al., 2022).
The model developed here takes advantage of the efficiency
of MOM6 to achieve run times of more than 3 simulation
years per day, our informal goal for a useful model that can
run large ensembles in reasonable times. Although there are
areas where this first version of the model can be improved,
we believe it forms a useful starting point for following the
recommendations of Dietze et al. (2018) by iteratively cre-
ating testable predictions that can both inform LMR appli-
cations and produce insights into how to improve the model
and make better predictions.
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Appendix A

Table A1. Parameter values used for the four-phytoplankton-group COBALT formulation enlisted herein. The rationale underlying the
variation in parameters across sizes and functional types is consistent with Stock et al. (2020), and further discussion can be found therein.

Param. Name Units Small Medium Large Diazo

PCmax Maximum photosynthetic rate at
0 ◦C

d−1 0.9 1.0 0.9 0.6

αchla chl a-specific initial slope of the
photosynthesis–light curve

g C (g chl)−1

(µmol photons m−2)−1
2.5 × 10−5 1.25 × 10−5 0.5 × 10−5 0.5 × 10−5

θmax Maximum chl a :C ratio g chl (g C)−1 0.035 0.045 0.055 0.035

kno3 Half-saturation const. for nitrate µM 0.5 1.0 2.5 5.0

knh4 Half-saturation const. for ammo-
nium

µM 0.01 0.02 0.05 0.1

kpo4
b Half-saturation const. for phosphate µM 0.01 0.02 0.05 0.1

kfed Half-saturation const. iron update µM 0.0004 0.0008 0.002 0.004

kfe2c Half-saturation const. for iron cell
quota

mol Fe (mol C)−1 2 4 10 12

fe2cmax Maximum Fe : C ratio mol Fe (mol C)−1 50 250 500 500

N : Pmin Minimum N : P ratio (P-replete) mol N (mol P)−1 20 16 14 40

sinkmax Maximum sinking rate (non-
aggregated)

m d−1 0 1 5 1

magg Aggregation loss rate constant d−1 µmol−1 N kg 0.05 0.10 0.25 0

mvir Viral loss rate constant d−1 µmol−1 N kg 0.25 0.125 0.05 0.05

a Values in µmol photons m−2 s−1 were converted to W m−2 assuming 4.60 W m−2 per µmol photons m−2 s−1(Kirk, 1994). b Value scaled by N : P /N : Pmax to account for
P frugality.

Table A2. The innate prey availability applied for each zooplankton consumer (column) to each potential prey item (column). The maximum
innate availability is 1. Prey switching between herbivory and carnivory is parameterized as described in Stock et al. (2008).

Prey

Predator Bacteria Small phyto- Medium phyto- Large phyto- Diazo- Small zoo- Medium zoo- Large zoo-
plankton plankton plankton trophs plankton plankton plankton

Small zooplankton 0.5 1.0 0.4 0 0 0 0 0
Medium zooplankton 0 0.4 1.0 0.25 0.75 1.0 0 0
Large zooplankton 0 0 0.4 1.0 0.4 0 1.0 0
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Code availability. The source code for each component of the
model has been archived at https://doi.org/10.5281/zenodo.7893349
(Ross et al., 2023b). MOM6 is built on an open devel-
opment paradigm, and the Git repositories at https://github.
com/mom-ocean/MOM6 (last access: 23 November 2023) and
https://github.com/NOAA-GFDL/MOM6 (last access: 23 Novem-
ber 2023) provide a means for the community to obtain updated and
experimental source code, report bugs, and contribute new features.
Repositories for the other model components are also available at
https://github.com/NOAA-GFDL (last access: 23 November 2023).

Data availability. All model output that was analyzed in this pa-
per has been published at https://doi.org/10.5281/zenodo.7893387
(Ross et al., 2023a). Model parameter files and prepared forcing
files are published at https://doi.org/10.5281/zenodo.7893727 (Ross
et al., 2023c).

The datasets used for comparison with the model and the
URL or DOI where the data can be downloaded are listed as
follows: GLORYS12 reanalysis (https://doi.org/10.48670/moi-
00021, Global Ocean Physics Reanalysis, 2021); OISST v2
(https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html,
Reynolds et al., 2007); regional temperature and salin-
ity climatologies (https://www.ncei.noaa.gov/products/
regional-ocean-climatologies, Seidov et al., 2018); mixed-
layer depth (https://doi.org/10.17882/91774, de Boyer Mon-
tégut, 2023); global ocean gridded sea surface heights
(https://doi.org/10.48670/moi-00148, Global Ocean Gridded
L4 Sea Surface Heights And Derived Variables Reprocessed 1993
Ongoing, 2023); TPXO9 (https://www.tpxo.net/home, Egbert and
Erofeeva, 2002); OC-CCI v6.0 (https://www.oceancolour.org/,
Sathyendranath et al., 2019); COPEPOD (https://www.st.
nmfs.noaa.gov/copepod/biomass/biomass-fields.html, Mo-
riarty and O’Brien, 2013); World Ocean Atlas 2018
(https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18,
Boyer et al., 2019); SOCATv2021 (https://doi.org/10.25921/yg69-
jd96, Bakker et al., 2021); surface pCO2 climatol-
ogy (https://doi.org/10.25921/qb25-f418, Landschützer
et al., 2020b); alkalinity, DIC, and aragonite saturation
(https://doi.org/10.25921/g8pb-zy76, Jiang et al., 2022); EPU
bottom temperatures (https://github.com/NOAA-EDAB/ecodata/
releases/tag/3.0, Bastille, 2023); northeast US CTD profiles
(ftp://ftp.nefsc.noaa.gov/pub/hydro/matlab_files/yearly, last
access: 14 February 2021); Buoy N01 (http://www.neracoos.
org/erddap/info/index.html?, NERACOOS, 2021); sea ice
concentration (https://doi.org/10.5067/MPYG15WAA4WX,
DiGirolamo et al., 2022); and cold-pool index (https:
//github.com/NOAA-EDAB/ecodata/releases/tag/3.0, Bastille,
2023).

The datasets used to create the model forcing and the URL or
DOI where the data can be downloaded are listed as follows: GLO-
RYS12 reanalysis (https://doi.org/10.48670/moi-00021, Global
Ocean Physics Reanalysis, 2021), TPXO9 (https://www.tpxo.net/
home, Egbert and Erofeeva, 2002), World Ocean Atlas (https:
//www.ncei.noaa.gov/archive/accession/NCEI-WOA18), GloFAS
(https://doi.org/10.24381/cds.a4fdd6b9, Zsoter, 2021), USGS
Gauge 07374525 (https://waterdata.usgs.gov/monitoring-location/
07374525/), ERA5 (https://doi.org/10.24381/cds.adbb2d47, Hers-
bach et al., 2023), Carter et al. (2021) alkalinity and DIC estimation

algorithm (https://doi.org/10.5281/zenodo.5512697), RC4USCoast
(https://doi.org/10.25921/9jfw-ph50, Gomez et al., 2022), and
GlobalNEWS2 (https://doi.org/10.1016/j.envsoft.2010.01.007,
Mayorga et al., 2010); Meinshausen et al. (2017) atmospheric CO2
(https://doi.org/10.22033/ESGF/input4MIPs.1118, Meinshausen
and Vogel, 2016; https://doi.org/10.22033/ESGF/input4MIPs.9866,
Meinshausen and Nicholls, 2018). Data from Lavoie et al.
(2021) and Stock et al. (2014) can be obtained by contacting the
corresponding authors.

Author contributions. ACR, CAS, AA, RH, MJH, KH, NZ, RD,
and WC contributed source code for regional MOM6, COBALT,
SIS2, and/or other components of the model framework. ACR,
CAS, EJD, FG, DK, DL, and JS contributed to preparation of model
input files. ACR, CAS, EC, MA, HdP, FG, JGJ, DL, LR, AR, VS,
and SS contributed to evaluation and interpretation of the model re-
sults. ACR and CAS prepared the initial draft of the manuscript.
All coauthors participated in discussions during various stages of
the model development and evaluation and read and approved the
final version of the manuscript.

Competing interests. The contact author has declared that none of
the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims made in the text, pub-
lished maps, institutional affiliations, or any other geographical rep-
resentation in this paper. While Copernicus Publications makes ev-
ery effort to include appropriate place names, the final responsibility
lies with the authors.

Acknowledgements. Vimal Koul and John Krasting are acknowl-
edged for their helpful comments and suggestions on an inter-
nal review of the manuscript, and the two anonymous reviewers
are thanked for their reviews that improved the manuscript. Ad-
vice from Mitch Bushuk on the remotely sensed sea ice data and
suggestions from Sang-Ki Lee are also greatly appreciated. An-
drew C. Ross, Enrique Curchitser, Dujuan Kang, James Simkins,
Laure Resplandy, Sang-Ik Shin, and Samantha Siedleck were partly
funded by grants from NOAA’s Climate Program Office. Enrique
Curchitser, Katherine Hedstrom, James Simkins, Fabian Gomez,
and Wenhao Chen were partly funded by NOAA’s climate port-
folio. Enrique Curchitser, Katherine Hedstrom, James Simkins,
and Dujuan Kang were partly funded by a grant from the Coop-
erative Institute for Modeling the Earth System. This study has
been conducted using EU Copernicus Marine Service information:
https://doi.org/10.48670/moi-00021, https://doi.org/10.48670/moi-
00148.

Review statement. This paper was edited by Andrew Yool and re-
viewed by two anonymous referees.

https://doi.org/10.5194/gmd-16-6943-2023 Geosci. Model Dev., 16, 6943–6985, 2023

https://doi.org/10.5281/zenodo.7893349
https://github.com/mom-ocean/MOM6
https://github.com/mom-ocean/MOM6
https://github.com/NOAA-GFDL/MOM6
https://github.com/NOAA-GFDL
https://doi.org/10.5281/zenodo.7893387
https://doi.org/10.5281/zenodo.7893727
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00021
https://psl.noaa.gov/data/gridded/data.noaa.oisst.v2.highres.html
https://www.ncei.noaa.gov/products/regional-ocean-climatologies
https://www.ncei.noaa.gov/products/regional-ocean-climatologies
https://doi.org/10.17882/91774
https://doi.org/10.48670/moi-00148
https://www.tpxo.net/home
https://www.oceancolour.org/
https://www.st.nmfs.noaa.gov/copepod/biomass/biomass-fields.html
https://www.st.nmfs.noaa.gov/copepod/biomass/biomass-fields.html
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18
https://doi.org/10.25921/yg69-jd96
https://doi.org/10.25921/yg69-jd96
https://doi.org/10.25921/qb25-f418
https://doi.org/10.25921/g8pb-zy76
https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0
https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0
ftp://ftp.nefsc.noaa.gov/pub/hydro/matlab_files/yearly
http://www.neracoos.org/erddap/info/index.html?
http://www.neracoos.org/erddap/info/index.html?
https://doi.org/10.5067/MPYG15WAA4WX
https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0
https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0
https://doi.org/10.48670/moi-00021
https://www.tpxo.net/home
https://www.tpxo.net/home
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18
https://www.ncei.noaa.gov/archive/accession/NCEI-WOA18
https://doi.org/10.24381/cds.a4fdd6b9
https://waterdata.usgs.gov/monitoring-location/07374525/
https://waterdata.usgs.gov/monitoring-location/07374525/
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5281/zenodo.5512697
https://doi.org/10.25921/9jfw-ph50
https://doi.org/10.1016/j.envsoft.2010.01.007
https://doi.org/10.22033/ESGF/input4MIPs.1118
https://doi.org/10.22033/ESGF/input4MIPs.9866
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00148
https://doi.org/10.48670/moi-00148


6976 A. C. Ross et al.: MOM6-COBALT-NWA12

References

Accad, Y. and Pekeris, C. L.: Solution of the Tidal Equations for the
M2 and S2 Tides in the World Oceans from a Knowledge of the
Tidal Potential Alone, Philos. T. Roy. Soc. Lond. A-Math., 290,
235–266, https://doi.org/10.1098/rsta.1978.0083, 1978.

Adcroft, A. and Campin, J.-M.: Rescaled Height Coordi-
nates for Accurate Representation of Free-Surface Flows
in Ocean Circulation Models, Ocean Model., 7, 269–284,
https://doi.org/10.1016/j.ocemod.2003.09.003, 2004.

Adcroft, A., Anderson, W., Balaji, V., Blanton, C., Bushuk, M.,
Dufour, C. O., Dunne, J. P., Griffies, S. M., Hallberg, R. W.,
Harrison, M. J., Held, I., Jansen, M. F., John, J., Krasting,
J. P., Langenhorst, A., Legg, S., Liang, Z., McHugh, C., Rad-
hakrishnan, A., Reichl, B. G., Rosati, T., Samuels, B. L.,
Shao, A., Stouffer, R., Winton, M., Wittenberg, A. T., Xi-
ang, B., Zadeh, N., and Zhang, R.: The GFDL Global Ocean
and Sea Ice Model OM4.0: Model Description and Simu-
lation Features, J. Adv. Model. Earth Sy., 11, 3167–3211,
https://doi.org/10.1029/2019MS001726, 2019.

Alexander, M. and Scott, J.: The Influence of ENSO on Air-Sea
Interaction in the Atlantic, Geophys. Res. Lett., 29, 46–1–46–4,
https://doi.org/10.1029/2001GL014347, 2002.

Alexander, M. A., Shin, S.-i., Scott, J. D., Curchitser, E., and Stock,
C.: The Response of the Northwest Atlantic Ocean to Climate
Change, J. Climate, 33, 405–428, https://doi.org/10.1175/JCLI-
D-19-0117.1, 2020.

Alfieri, L., Lorini, V., Hirpa, F. A., Harrigan, S., Zsoter,
E., Prudhomme, C., and Salamon, P.: A Global Stream-
flow Reanalysis for 1980–2018, J. Hydrol., 6, 100049,
https://doi.org/10.1016/j.hydroa.2019.100049, 2020.

Amaya, D. J., Alexander, M. A., Scott, J. D., and Jacox,
M. G.: An evaluation of high-resolution ocean reanalyses in
the California current system, Prog. Oceanogr., 210, 102951,
https://doi.org/10.1016/j.pocean.2022.102951, 2023.

Andres, M.: On the Recent Destabilization of the Gulf Stream Path
Downstream of Cape Hatteras, Geophys. Res. Lett., 43, 9836–
9842, https://doi.org/10.1002/2016GL069966, 2016.

Arakawa, A. and Lamb, V. R.: Computational Design of the Ba-
sic Dynamical Processes of the UCLA General Circulation
Model, in: General Circulation Models of the Atmosphere, edited
by: Chang, J., vol. 17, Methods in Computational Physics:
Advances in Research and Applications, Elsevier, 173–265,
https://doi.org/10.1016/B978-0-12-460817-7.50009-4, 1977.

Baker, A. R. and Croot, P. L.: Atmospheric and Marine Controls
on Aerosol Iron Solubility in Seawater, Mar. Chem., 120, 4–13,
https://doi.org/10.1016/j.marchem.2008.09.003, 2010.

Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K.
M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D.,
Nakaoka, S., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C.,
Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., Alin, S.
R., Balestrini, C. F., Barbero, L., Bates, N. R., Bianchi, A. A.,
Bonou, F., Boutin, J., Bozec, Y., Burger, E. F., Cai, W.-J., Castle,
R. D., Chen, L., Chierici, M., Currie, K., Evans, W., Feather-
stone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J.,
Hauck, J., Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss,
B., Ibánhez, J. S. P., Johannessen, T., Keeling, R., Kitidis, V.,
Körtzinger, A., Kozyr, A., Krasakopoulou, E., Kuwata, A., Land-
schützer, P., Lauvset, S. K., Lefèvre, N., Lo Monaco, C., Manke,

A., Mathis, J. T., Merlivat, L., Millero, F. J., Monteiro, P. M. S.,
Munro, D. R., Murata, A., Newberger, T., Omar, A. M., Ono, T.,
Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L., Saito, S.,
Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R., Sieger,
R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J.,
Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A.
C., Vandemark, D., Ward, B., Watson, A. J., and Xu, S.: A multi-
decade record of high-quality fCO2 data in version 3 of the Sur-
face Ocean CO2 Atlas (SOCAT), Earth Syst. Sci. Data, 8, 383–
413, https://doi.org/10.5194/essd-8-383-2016, 2016.

Bakker, D. C. E., Alin, S. R., Castaño-Primo, R., Cronin, M.,
Gkritzalis, T., Kozyr, A., Lauvset, S. K., Metzl, N., Munro, D. R.,
Nakaoka, S., O’Brien, K. M., Olsen, A., Omar, A. M., Pfeil, B.,
Pierrot, D., Rodriguez, C., Steinhoff, T., Sutton, A. J., Tilbrook,
B., Wanninkhof, R., Willstrand Wranne, A., Ahmed, M., Ander-
sson, A., Apelthun, L. B., Bates, N., Battisti, R., Beaumont, L.,
Becker, M., Benoit-Cattin, A., Berghoff, C. F., Boutin, J., Burger,
E. F., Burgers, T. M., Cantoni, C., Cattrijsse, A., Chierici, M.,
Cross, J. N., Coppola, L., Cosca, C. E., Currie, K. I., De Carlo,
E. H., Else, B., Enright, M. P., Ericson, Y., Evans, W., Feely, R.
A., Fiedler, B., Fransson, A., García-Ibáñez, M. I., Gehrung, M.,
Glockzin, M., González-Dávila, M., Gutekunst, S., Hermes, R.,
Humphreys, M. P., Hunt, C. W., Ibánhez, J., Severino P., Jones,
S. D., Kitidis, V., Körtzinger, A., Kosugi, N., Landa, C. S., Land-
schützer, P., Lefèvre, N., Lo Monaco, C., Luchetta, A., Lutz, V.
A., Macovei, V. A., Manke, A. B., Merlivat, L., Millero, F. J.,
Monacci, N. M., Negri, R. M., Newberger, T., Newton, J., Nick-
ford, S. E., Nojiri, Y., Ohman, M., Ólafsdóttir, S. R., Sweeney, C.,
Ono, T., Palter, J. B., Papakyriakou, T., Peterson, W. T., Plued-
demann, A. J., Qi, D., Rehder, G., Ritschel, M., Rutgersson, A.,
Sabine, C. L., Salisbury, J. E., Santana-Casiano, J. M., Schlitzer,
R., Send, U., Skjelvan, I., Smith, K., Sparnocchia, S., Sullivan,
K. F., Sutherland, S. C., Szuts, Z. B., Tadokoro, K., Tanhua, T.,
Telszewski, M., Theetaert, H., Vandemark, D., Voynova, Y. G.,
Wada, C., Weller, R. A., and Woosley, T. J.: Surface Ocean CO2
Atlas Database Version 2021 (SOCATv2021) (NCEI Accession
0235360), NOAA National Centers for Environmental Informa-
tion [data set], https://doi.org/10.25921/yg69-jd96, 2021.

Balch, W. M., Drapeau, D. T., Bowler, B. C., Record, N. R.,
Bates, N. R., Pinkham, S., Garley, R., and Mitchell, C.: Chang-
ing Hydrographic, Biogeochemical, and Acidification Prop-
erties in the Gulf of Maine as Measured by the Gulf of
Maine North Atlantic Time Series, GNATS, Between 1998
and 2018, J. Geophys. Res.-Biogeo., 127, e2022JG006790,
https://doi.org/10.1029/2022JG006790, 2022.

Bastille, K.: Release 3.0. NOAA-EDAB/ecodata [dataset], https://
github.com/NOAA-EDAB/ecodata/releases/tag/3.0, last access:
1 August 2023.

Baumann, H., Jones, L., Murray, C., Siedlecki, S., Alexan-
der, M., and Cross, E.: Impaired Hatching Exacerbates
the High CO2 Sensitivity of Embryonic Sand Lance Am-
modytes Dubius, Mar. Ecol. Prog. Ser., 687, 147–162,
https://doi.org/10.3354/meps14010, 2022.

Bell, R., Spring, A., Brady, R., Huang, A., Squire, D.,
Blackwood, Z., Sitter, M. C., and Chegini, T.: xarray-
contrib/xskillscore: Metrics for verifying forecasts, Zenodo
[code], https://doi.org/10.5281/zenodo.5173153, 2021.

Bell, R. J., Richardson, D. E., Hare, J. A., Lynch, P. D., and Fratan-
toni, P. S.: Disentangling the Effects of Climate, Abundance, and

Geosci. Model Dev., 16, 6943–6985, 2023 https://doi.org/10.5194/gmd-16-6943-2023

https://doi.org/10.1098/rsta.1978.0083
https://doi.org/10.1016/j.ocemod.2003.09.003
https://doi.org/10.1029/2019MS001726
https://doi.org/10.1029/2001GL014347
https://doi.org/10.1175/JCLI-D-19-0117.1
https://doi.org/10.1175/JCLI-D-19-0117.1
https://doi.org/10.1016/j.hydroa.2019.100049
https://doi.org/10.1016/j.pocean.2022.102951
https://doi.org/10.1002/2016GL069966
https://doi.org/10.1016/B978-0-12-460817-7.50009-4
https://doi.org/10.1016/j.marchem.2008.09.003
https://doi.org/10.5194/essd-8-383-2016
https://doi.org/10.25921/yg69-jd96
https://doi.org/10.1029/2022JG006790
https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0
https://github.com/NOAA-EDAB/ecodata/releases/tag/3.0
https://doi.org/10.3354/meps14010
https://doi.org/10.5281/zenodo.5173153


A. C. Ross et al.: MOM6-COBALT-NWA12 6977

Size on the Distribution of Marine Fish: An Example Based on
Four Stocks from the Northeast US Shelf, ICES J. Marine Sci.,
72, 1311–1322, https://doi.org/10.1093/icesjms/fsu217, 2015.

Bennett, A. F. and Kloeden, P. E.: The Ill-Posedness
of Open Ocean Models, J. Phys. Oceanogr.,
11, 1027–1029, https://doi.org/10.1175/1520-
0485(1981)011<1027:TIPOOO>2.0.CO;2, 1981.

Bisagni, J. J. and Sano, M. H.: Satellite Observations of Sea
Surface Temperature Variability on Southern Georges Bank,
Cont. Shelf Res., 13, 1045–1064, https://doi.org/10.1016/0278-
4343(93)90040-5, 1993.

Bodner, A. S., Fox-Kemper, B., Johnson, L., Roekel, L. P. V.,
McWilliams, J. C., Sullivan, P. P., Hall, P. S., and Dong,
J.: Modifying the Mixed Layer Eddy Parameterization to In-
clude Frontogenesis Arrest by Boundary Layer Turbulence, J.
Phys. Oceanogr., 53, 323–339, https://doi.org/10.1175/JPO-D-
21-0297.1, 2023.

Boivin-Rioux, A., Starr, M., Chassé, J., Scarratt, M., Perrie,
W., Long, Z., and Lavoie, D.: Harmful Algae and Cli-
mate Change on the Canadian East Coast: Exploring Occur-
rence Predictions of Dinophysis Acuminata, D. Norvegica,
and Pseudo-nitzschia Seriata, Harmful Algae, 112, 102183,
https://doi.org/10.1016/j.hal.2022.102183, 2022.

Boyer, T. P., Garcia, H. E., Locarnini, R. A., Zweng, M. M., Mis-
honov, A. V., Reagan, J. R., Weathers, K. A., Baranova, O. K.,
Seidov, D., and Smolyar, I. V.: World Ocean Atlas 2018, https:
//www.ncei.noaa.gov/archive/accession/NCEI-WOA18 (last ac-
cess: 29 September 2020), 2019.

Brickman, D., Hebert, D., and Wang, Z.: Mechanism
for the Recent Ocean Warming Events on the Scotian
Shelf of Eastern Canada, Cont. Shelf Res., 156, 11–22,
https://doi.org/10.1016/j.csr.2018.01.001, 2018.

Bryan, F. O., Hecht, M. W., and Smith, R. D.: Resolution
Convergence and Sensitivity Studies with North At-
lantic Circulation Models. Part I: The Western Bound-
ary Current System, Ocean Model., 16, 141–159,
https://doi.org/10.1016/j.ocemod.2006.08.005, 2007.

Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G., and
Saba, V.: Observed Fingerprint of a Weakening Atlantic
Ocean Overturning Circulation, Nature, 556, 191–196,
https://doi.org/10.1038/s41586-018-0006-5, 2018.

Cai, W.-J., Hu, X., Huang, W.-J., Murrell, M. C., Lehrter,
J. C., Lohrenz, S. E., Chou, W.-C., Zhai, W., Hollibaugh,
J. T., Wang, Y., Zhao, P., Guo, X., Gundersen, K., Dai, M.,
and Gong, G.-C.: Acidification of Subsurface Coastal Wa-
ters Enhanced by Eutrophication, Nat. Geosci., 4, 766–770,
https://doi.org/10.1038/ngeo1297, 2011.

Carolina Castillo-Trujillo, A., Kwon, Y.-O., Fratantoni, P., Chen,
K., Seo, H., Alexander, M. A., and Saba, V. S.: An eval-
uation of eight global ocean reanalyses for the North-
east U.S. continental shelf, Prog. Oceanogr., 219, 103126,
https://doi.org/10.1016/j.pocean.2023.103126, 2023.

Carter, B. R., Bittig, H. C., Fassbender, A. J., Sharp, J. D., Takeshita,
Y., Xu, Y.-Y., Álvarez, M., Wanninkhof, R., Feely, R. A., and
Barbero, L.: New and Updated Global Empirical Seawater Prop-
erty Estimation Routines, Limnol. Oceanogr. Meth., 19, 785–
809, https://doi.org/10.1002/lom3.10461, 2021.

Cavalieri, D. J., Parkinson, C. L., Gloersen, P., and Zwally,
H. J.: Sea Ice Concentrations from Nimbus-7 SMMR

and DMSP SSM/I-SSMIS Passive Microwave Data, Ver-
sion 1, National Snow and Ice Data Center [data set],
https://doi.org/10.5067/8GQ8LZQVL0VL, 1996.

Chassignet, E. P. and Garaffo, Z. D.: Viscosity Parameteriza-
tion and the Gulf Stream Separation, in: From stirring to
mixing in a stratified ocean: Proceedings of the 12th ‘Aha
Huliko’a Hawaiian Winter Workshop, University of Hawai’i
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