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underlie SST predictability. A simple persistence forecast 
provides considerable skill for lead times up to ~4 months, 
while skill above persistence is mostly confined to forecasts 
of late winter/spring and derives primarily from predict-
able evolution of ENSO-related variability. Specifically, 
anomalously weak (strong) equatorward winds are skill-
fully forecast during El Niño (La Niña) events, and drive 
negative (positive) upwelling anomalies and consequently 
warm (cold) temperature anomalies. This mechanism pre-
vails during moderate to strong ENSO events, while years 
of ENSO-neutral conditions are not associated with signifi-
cant forecast skill in the wind or significant skill above per-
sistence in SST. We find also a strong latitudinal gradient in 
predictability within the CCS; SST forecast skill is highest 
off the Washington/Oregon coast and lowest off southern 
California, consistent with variable wind forcing being the 
dominant driver of SST predictability. These findings have 
direct implications for regional downscaling of seasonal 
forecasts and for short-term management of living marine 
resources.
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1 Introduction

The California Current System (CCS) is a highly produc-
tive marine ecosystem, supporting primary productivity 
and fish catch disproportionately high for its spatial extent 
(Chavez and Messié 2009) and hosting a diverse array of 
top predators that rely on abundant prey resources in the 
region (Block et al. 2011). The proximate cause of elevated 
productivity in the CCS is the seasonal onset/intensifica-
tion of northerly winds that drive coastal upwelling in the 
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spring and summer, enriching the sunlit surface layer with 
nutrients from below and stimulating the growth of phy-
toplankton that form the base of the marine food web. 
These dynamics are sensitive to temporal variability on 
scales from daily weather to multi-decadal and secular 
change (Checkley and Barth 2009). In particular, leading 
modes of basin-scale climate variability including the El 
Niño-Southern Oscillation (ENSO), the Pacific Decadal 
Oscillation (PDO), and the North Pacific Gyre Oscillation 
(NPGO) exert strong control over CCS upwelling (Di Lor-
enzo et al. 2008; Jacox et al. 2014, 2015b), generating pro-
nounced interannual variability in the nearshore environ-
ment (Fig. 1) and its biological communities.

Given the dynamic climate and oceanographic variabil-
ity of the CCS and the profound impact of this variability 
on marine resources, there is momentum building to move 
toward fisheries management strategies that incorporate 
real-time and forecasted environmental information to 
inform the temporal and spatial extent of fishery closures 
(Hobday et  al. 2013; Lewison et  al. 2015; Maxwell et  al. 
2015). For example, to predict the spatiotemporal overlap 
between protected and targeted species, empirical statisti-
cal relationships are used to link marine species to their 
preferred environment, and then predict the distribution 
of those species based on more widely available oceano-
graphic observations or predictions. In Australian waters 
this approach has been extended to operational seasonal 
forecasts using dynamical climate forecast systems, with 
notable examples for coral reef stress on the Great Barrier 
Reef (Spillman et al. 2013), bycatch reduction for Southern 
Bluefin Tuna off east Australia (Hobday et  al. 2011), and 
improved efficiency of the Southern Bluefin Tuna fishery in 

the Great Australian Bight (Eveson et al. 2015). While sim-
ilar efforts have not yet been operationalized in the CCS, 
Kaplan et al. (2016) demonstrate one potential application 
using a sea surface temperature (SST) based habitat model 
in conjunction with downscaled seasonal forecasts (Siedle-
cki et  al. 2016) to predict Pacific sardine distributions in 
the northern CCS. A second recent CCS climate forecast 
application aims to refine catch limits for climate-sensi-
tive Pacific sardine by introducing short-term temperature 
forecasts (Tommasi et al. 2017). These results suggest that 
anticipating shifts into warm (productive) and cold (unpro-
ductive) states for sardine may enable increased catch with-
out increasing the probability of stock collapse.

Considerations for applying global climate models 
(GCMs) to living marine resources have been detailed for 
both climate projections (Stock et  al. 2011) and seasonal 
forecasts (Hobday et  al. 2016). In general, the foundation 
of successful seasonal forecasting applications is a skill-
ful forecast for some desired physical parameter, upon 
which biological responses can be added through statisti-
cal or dynamical models. A critical physical parameter in 
this regard is the sea surface temperature (SST), often both 
a primary driver and leading indicator of marine resource 
responses to climate variability (Ottersen et  al. 2010). 
Dynamical skill for seasonal SST forecasts has been dem-
onstrated in many coastal ecosystems around the world, 
including the CCS, despite the relatively coarse resolution 
of the global models used to make such predictions (Stock 
et  al. 2015). Furthermore, the skill of seasonal forecasts 
tends to be improved by using multi-model ensembles like 
the North American Multi-Model Ensemble (NMME) 
rather than multi-member ensembles of a single model 

Fig. 1  Left 1982–2009 mean 
SST and right standard devia-
tion of 1982–2009 annual mean 
SST. Data are from NOAA’s 
0.25° daily OISSTv2 product
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(Becker et al. 2014; Kirtman et al. 2014). Here, we explore 
the skill of seasonal SST forecasts in the CCS for indi-
vidual seasonal forecast systems as well as for the NMME 
multi-model mean. We then document the conditions under 
which forecast skill emerges and elucidate the mechanisms 
behind it, with the intention of highlighting strengths and 
weaknesses of global forecast systems in the CCS and their 
potential application to regional downscaling and marine 
resource management in the region.

2  Methods

2.1  Study domain

The area of interest to this study is the CCS, off the west 
coast of the United States (Fig.  1). We focus on an area 
extending from northern Mexico to the southern tip of 
Vancouver Island (30–48°N) and from the coast to 300 km 
offshore, encompassing both the highly productive region 
within ~50  km of the coast and the California Current 
transition zone farther offshore, where nutrient and chlo-
rophyll levels are elevated relative to the oligotrophic gyre 
but lower than in the nearshore region (Jacox et al. 2016a). 
In Sect. 3.4 we further divide the CCS into northern, cen-
tral, and southern CCS regions, with divisions at Cape 
Mendocino (~40.5°N) and Point Conception (~34.5°N). 
These sub-regions capture distinct physical and biological 

regimes within the CCS, and are delineated according to 
the prevailing atmospheric forcing and ocean dynamics 
(Checkley and Barth 2009; Dorman and Winant 1995).

2.2  Seasonal forecasts

Seasonal SST forecast skill is tested using global cou-
pled atmosphere-ocean-land-sea ice models participating 
in Phase I of the North American Multi Model Ensem-
ble (NMME) (Kirtman et  al. 2014). For our study period 
(1982–2009), the NMME includes hindcasts from 14 
models, summarized in Table 1. Each model produces an 
ensemble of forecasts initialized each month, with the num-
ber of ensemble members ranging from 6 to 24 and forecast 
lead times ranging from 8 to 12 months depending on the 
model. In most cases, forecasts are initialized on the first of 
the month; for those that are not, we use forecasts initial-
ized within the 2 weeks leading up to the beginning of the 
month. Ensemble members are averaged to produce a mean 
forecast for each model, and the mean of those constitutes 
the NMME mean forecast. Output on the native grids of 
individual models is interpolated to a common grid with 1° 
resolution in longitude and latitude.

In Sects. 3.3 and 3.4 we perform a more detailed anal-
ysis on a single member of the NMME, version 4 of the 
Canadian Centre for Climate Modeling and Analysis 
(CCCma) Coupled Climate Model (CMC2-CanCM4; here-
after CanCM4) (Merryfield et  al. 2013). The focus on a 

Table 1  Brief model descriptions for 14 contributing members of Phase I of the NMME

Model name Organization Hindcast period Ensemble size Forecast 
leads 
(months)

References

CMC1-CanCM3 Canadian Meteorological Center 
(CMC)

1981–2011 10 0–11 Merryfield et al. (2013)

CMC2-CanCM4 CMC 1981–2011 10 0–11 Merryfield et al. (2013)
COLA-RSMAS-CCSM3 National Center for Atmospheric 

Research (NCAR)
1982–2015 6 0–11 Kirtman and Min (2009)

COLA-RSMAS-CCSM4 NCAR 1982–2015 10 0–11 Infanti and Kirtman 
(2016)

GFDL-CM2p1 Geophysical Fluid Dynamics 
Laboratory (GFDL)

1982–2012 10 0–11 Delworth (2006)

GFDL-CM2p1-aer04 GFDL 1982–2015 10 0–11 Delworth (2006)
GFDL-CM2p5-FLOR-A06 GFDL 1980–2015 12 0–11 Vecchi et al. (2014)
GFDL-CM2p5-FLOR-B01 GFDL 1980–2015 12 0–11 Vecchi et al. (2014)
IRI-ECHAM4p5-AnomalyCou-

pled
International Research Institute 

for Climate and Society (IRI)
1982–2012 12 0–7 DeWitt (2005)

IRI-ECHAM4p5-DirectCoupled IRI 1982–2012 12 0–7 DeWitt (2005)
NASA-GMAO National Aeronautics and Space 

Administration (NASA)
1981–2009 8 0–8 Vernieres et al. (2012)

NASA-GMAO-062012 NASA 1981–2015 10 0–8 Vernieres et al. (2012)
NCEP-CFSv1 National Centers for Environmen-

tal Prediction (NCEP)
1981–2009 15 0–8 Saha et al. (2006)

NCEP-CFSv2 NCEP 1982–2010 24 0–8 Saha et al. (2014)
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single model complements the multi-model analysis and 
enables a more mechanistic exploration into the sources of 
forecast skill. We chose CanCM4 as it is amongst the best 
performers of the NMME ensemble for this region (Fig. 2), 
and also was the only NMME member with readily availa-
ble atmospheric flux fields (wind stress, surface heat fluxes) 
for the full study period. CanCM4 employs the CanAM4 
atmospheric model, with T63 truncation (~2.8° horizontal 
resolution) and 35 hybrid (sigma pressure) vertical levels. 
The CanOM4 ocean model has spherical coordinates with 
horizontal resolution of ~1.41° longitude by 0.94° lati-
tude and 40 vertical z-levels. The atmospheric and oceanic 
model grids are aligned such that 6 ocean grid cells (2 lon-
gitude by 3 latitude) lie beneath each atmospheric grid cell. 
CanCM4 forecasts include 10 ensemble members run for 

lead times of 0–11 months, and a range of atmospheric and 
oceanic state variables are available as part of the NMME. 
In our analysis, we examine several oceanic and atmos-
pheric fields including sea surface temperature, depth of 
the 26.0 kg  m−3 isopycnal, vertical velocity at 50 m depth, 
meridional wind stress, and surface net heat flux to eluci-
date mechanisms of SST variability and predictability.

2.3  Validation data

Sea Surface Temperature hindcasts are validated against 
monthly averages of NOAA’s 0.25° daily Optimum Inter-
polation Sea Surface Temperature, version 2 (OISSTv2) 
(Banzon et  al. 2016; Reynolds et  al. 2007). Stock et  al. 
(2015) found through comparison with uninterpolated 

Fig. 2  SST skill grids for all members of the NMME. Initialization 
month is on the x-axis, lead time is on the y-axis, and anomaly cor-
relation coefficient is in color. The zero-lead forecast is for the month 
of initialization (e.g., the lower left corner of each grid represents a 
forecast of January’s monthly mean SST, initialized at the beginning 

of January). Gray dots indicate significant skill while white dots indi-
cate significant skill above persistence (95% confidence level). 5 of 
the 14 models (COLA-RSMAS-CCSM3, both IRI models, NASA-
GMAO, and NCEP-CFSv1) have been retired
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in-situ data that OISSTv2 is highly accurate in the CCS. 
Validation data for surface wind stress and net surface heat 
flux are synoptic monthly mean fields from the European 
Centre for Medium-range Weather Forecasting (ECMWF) 
0.7° resolution Interim reanalysis (ERA Interim) (Dee et al. 
2011). High-resolution (0.1°) surface and subsurface vari-
ables presented for comparison in Sect. 4 derive from the 
University of California–Santa Cruz CCS regional ocean 
reanalysis (CCSRA) (Neveu et  al. 2016), which uses the 
Regional Ocean Modeling System (ROMS) with 4-dimen-
sional variational data assimilation, 0.1° horizontal reso-
lution, and 42 vertical levels. CCSRA spans the period 
1980–2010 and assimilates satellite SST and SSH as well 
as available in  situ temperature and salinity measure-
ments. It has been used extensively to study regional ocean 
dynamics in the CCS, particularly related to basin-scale 
climate variability including El Niño–Southern Oscillation 
(ENSO) teleconnections of particular interest to the present 
study (Jacox et al. 2015a, 2016b).

2.4  Forecast skill evaluation

Forecast skill is evaluated as in Stock et  al. (2015), using 
anomaly correlation coefficients (ACC) between forecast 
and observed fields. Forecast anomalies are calculated 
based on a lead-dependent climatology to account for 
model drift. We evaluate significance of forecast ACC using 
the method of Bretherton et al. (1999), which corrects for 
autocorrelation in the sample. Significance is tested relative 
to zero (no forecast skill) and relative to a persistence fore-
cast, which assumes that SST anomalies from the month 
prior to initialization will persist across all lead times. Oce-
anic temperature anomalies evolve much more slowly than 
atmospheric anomalies, owing to the much greater ther-
mal inertia in the ocean (Frankignoul 1985; Goddard et al. 
2001). The persistence forecast is therefore often skillful 
and provides a baseline for evaluating model forecasts. The 
skill above persistence provides a measure of the added 
value of a dynamical forecast system. We focus on ACC 
as it is a common deterministic measure of skill and suits 
the interests of this study, which is concerned with patterns 
and mechanisms of predictive skill rather than a thorough 
evaluation of each model. For a detailed skill evaluation of 
all models in the NMME, including multiple deterministic 
and probabilistic skill metrics, see Hervieux et al. (2017).

3  Results

3.1  SST Forecast Skill in the CCS

In the CCS, simple persistence forecasts yield signifi-
cant skill (ACC significantly greater than zero at the 95% 

confidence level) for lead times up to several months. This 
can be seen in the upper left panel of Fig. 2, where ACC 
is plotted as a function of initialization month and lead 
time. With the exception of September and December ini-
tializations, persistence forecasts have significant skill for 
4 months or more, and for forecasts initialized in January, 
persistence offers significant forecast skill as far out as 
October (9-month lead time). In general, the lowest persis-
tence forecast skill comes from forecasts initialized in late 
summer (July–September). This period is one of strong 
stratification, a shallow mixed layer, and low thermal iner-
tia in the CCS. Late summer SST anomalies therefore have 
relatively weak correlation with SST anomalies in the fol-
lowing winter/spring. Rather, winter/spring SST anomalies 
are coupled to SST anomalies from the previous winter/
spring, which reemerge when the surface mixed layer deep-
ens (Alexander et al. 1999).

The NMME ensemble mean forecast demonstrates sig-
nificant skill across nearly all initialization months and lead 
times, with the exception of some long lead (>6 months) 
forecasts initialized in late fall and winter (Fig.  2). Indi-
vidual models exhibit skill patterns similar to that of the 
ensemble mean. In particular, enhanced predictability for 
forecasts of late winter/early spring (February–April) SST 
anomalies are visible as a band of high skill extending from 
the upper left to lower right in the panels of Fig. 2. As the 
late winter/early spring period is also one of minimal skill 
from persistence forecasts, it is where much of the dynami-
cal skill above persistence resides. Though the degree of 
skill varies among models, the overall similarities suggest 
that different models may have similar mechanisms gen-
erating predictability, but with varying degrees of fidelity. 
The CMC models are notably strong performers; CMC2-
CanCM4 in particular has skill comparable to and in some 
cases better than the ensemble mean forecast (we explore 
the sources of this skill in Sect.  3.3). Some of the mod-
els that exhibit relatively lower skill in the CCS (e.g., the 
GFDL and IRI models) have been shown to perform par-
ticularly well in other regions (Hervieux et al. 2017, Stock 
et al. 2015).

3.2  Forecast skill relative to basin‑scale variability

We first explore the dynamics underlying seasonal evolu-
tion of CCS SST anomalies by examining their relation to 
the broader basin-scale variability. When SST anomalies 
averaged over the CCS region are correlated at zero-lag 
with SST anomalies throughout the Pacific basin, a clear 
pattern associated with ENSO emerges (Fig.  3). Not sur-
prisingly, correlations are strongest in the vicinity of the 
CCS, with weaker correlations extending far afield. When 
the CCS mean SST anomalies are lagged relative to basin-
wide anomalies, the ENSO pattern remains, though the 
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intensity of correlations changes regionally. At 3  months 
lead, correlations within the CCS decline, indicating fad-
ing persistence. Conversely, SST anomalies in the Niño 3.4 
region of the equatorial Pacific are more strongly correlated 
with CCS anomalies at 3 months lead than they are at zero 
lead. At 6–9 month lead times, a similar pattern continues, 
with the correlations continuing to decrease in the CCS 
while correlations between the CCS and the equatorial 
Pacific decline more slowly. These findings are consistent 
with our understanding of ENSO’s influence on the CCS, 
with equatorial Pacific SST anomalies leading CCS anom-
alies by several months (Jacox et  al. 2015b), and suggest 
ENSO variability as a likely source of seasonal predictabil-
ity in the CCS.

The relationship between ENSO and CCS SST forecast 
skill can be illustrated further through simple correlation 
analysis. Specifically, we construct a statistical forecast 
using multiple linear regression, where the observed SST 
anomaly at a given initialization month and lead time is fit 
as a function of both the CCS and Niño 3.4 SST anomalies 
the month prior to forecast initialization. For example, a 
statistical forecast of June initialized in February (4-month 
lead time) would fit the observed June SST anomalies as a 
function of the CCS and Niño 3.4 SST anomalies in Janu-
ary. Effectively, this regression constitutes a statistical fore-
cast of CCS anomalies based on the combination of persis-
tence and ENSO variability. It captures much of the skill of 
the dynamical forecast systems in the NMME (Fig. 4), and 
perhaps provides an even better benchmark than persistence 
upon which dynamical models should try to improve. The 

considerable skill of statistical forecasts is well established, 
with some highly evolved examples having been developed 
and applied on multiple spatial and temporal scales (New-
man 2007).

When averaged across all lead times, forecast skill 
is nearly constant for all initialization months, and the 
NMME multi-model mean forecast skill is on par with 
the best individual models as well as the statistical (per-
sistence + ENSO) forecast (Fig.  5). It has been known for 
some time that a multi-model ensemble means tends to 
perform as well as or better than the best individual model; 
the ensemble mean skill stems from its greater consistency 
and reliability relative to individual models, as well as the 
cancellation of individual model errors when they are aver-
aged (Hagedorn et al. 2005). The persistence forecast alone 
is comparable in skill to the worst performing individual 
model.

Skill declines steadily as lead times increase, though the 
decline in skill from 3 to 11 months is small relative to the 
decline from 0 to 3 months (Fig. 5, middle). The NMME 
mean, statistical forecast, and best individual model all 
exhibit similar performance. However, a more nuanced 
picture emerges when viewing skill as a function of the 
month being predicted (Fig.  5, bottom). Dynamical fore-
cast skill and skill above persistence are highest for pre-
dictions of late winter/spring, with maximum skill arising 
for February/March SST anomalies. Skill is relatively low 
for Summer-Fall forecasts, with minimum skill for August, 
and neither the ensemble mean nor any individual model 
is able to forecast August–October with greater skill than a 

Fig. 3  Correlation of Pacific 
basin-wide SST with CCS 
regionally averaged SST. 
Individual panels show the cor-
relation of CCS SST with basin-
wide SST 0, 3, 6, and 9 months 
prior. Black outlines mark the 
CCS and Nino3.4 regions
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persistence forecast. The statistical forecast based on persis-
tence and ENSO variability has a seasonal cycle of forecast 
skill that is qualitatively similar to that for dynamical fore-
casts. However, the NMME mean performs better for Janu-
ary–May forecasts, largely due to added skill for long lead 
(>6 month) forecasts initialized in spring, and the statisti-
cal forecast performs slightly better for October–December 
forecasts, largely due to added skill for long lead forecasts 
initialized in winter (Fig. 4).

3.3  Mechanisms of SST predictability

The findings of Sects. 3.1 and 3.2 highlight two key points 
about seasonal forecast skill in the CCS: (1) dynamical skill 
above persistence is concentrated in forecasts of the first 
half of the year, particularly January–April, and (2) skill 
above persistence derives largely, though not entirely, from 
a predictable regional manifestation of ENSO variability. 
We now turn our attention to elucidating the mechanisms 
through which dynamical forecast systems capture ENSO-
related predictability in the CCS. In order to do so, we 
focus on a single member of the NMME, CanCM4, which 
is arguably the best performing model for CCS hindcasts 
(Fig. 2) and serves as a test case to explore in more detail 
the dynamics governing predictability.

The strong relationship of skill above persistence to 
ENSO variability (Sect.  3.2) suggests that years of large 
ENSO signals (i.e., El Niño and La Niña events) may con-
tribute disproportionately to seasonal forecast skill. Indeed, 
when hindcast skill above persistence is partitioned into the 
years following medium to strong ENSO events [i.e., when 
the 3-month running mean of Niño 3.4 SST anomalies, also 
termed the Oceanic Niño Index (ONI), exceeds a magni-
tude of 1] and the years associated with neutral or weakly 

positive/negative ENSO conditions (|ONI|<1), we find that 
forecast skill above persistence is associated almost entirely 
with the former (Fig.  6). In other words, the dynamical 
forecast skill above persistence for 28-year hindcasts is 
largely captured by using dynamical forecasts for the 10 
strongest ENSO events (1983, 1987, 1988, 1989, 1992, 
1998, 1999, 2000, 2003, 2008) and persistence forecasts for 
the other 18 years. This finding is consistent with previous 
studies that identify ENSO variability as the primary driver 
of seasonal predictability in air temperature and precipita-
tion anomalies over the continental United States (Barnett 
and Preisendorfer 1987; Quan et  al. 2006). However, it 
should be noted that there is residual skill in the dynamical 
forecast beyond that generated during ENSO events, par-
ticularly for long lead forecasts (cf., left and middle panels 
of Fig. 6).

Having determined that SST forecast skill above persis-
tence is mostly constrained to forecasts of the late winter/
spring in moderate to strong ENSO events, we examine the 
regional forcing mechanisms driving SST anomalies dur-
ing those periods. Tropical SST variability during ENSO 
events modifies north Pacific SST anomalies through 
atmospheric teleconnections [i.e., the atmospheric bridge 
(Alexander et  al. 2002)]. Using global mixed layer mod-
els, Alexander et  al. (2002) found that the atmospheric 
bridge drives basin-scale SST anomalies primarily through 
the net surface heat flux, with a weaker contribution from 
wind-driven Ekman transport. However, they found the 
contributions of surface heat flux and wind stress to be of 
comparable magnitude in the nearshore region of the CCS, 
where wind-driven coastal upwelling exerts significant 
control over ocean temperature variability. Regional stud-
ies confirm the importance of wind stress anomalies for 
driving environmental change in the CCS during ENSO 

Fig. 4  Forecast skill above persistence (e.g., ACC of dynamical fore-
cast minus ACC of persistence forecast) for left the NMME ensem-
ble mean forecast, middle a statistical forecast based on persistence 
and tropical SST anomalies, and right the difference between them. 
The statistical forecast is constructed using a multiple linear regres-
sion, where the observed SST anomaly at a given initialization month 

and lead time is fit as a function of both the CCS and Niño 3.4 SST 
anomalies the month prior to forecast initialization. For example, a 
statistical forecast of June initialized in February (4-month lead time) 
would fit the observed June SST anomalies as a function of the CCS 
and Niño 3.4 SST anomalies in January
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events, with El Niño (La Niña) conditions typically bring-
ing reduced (increased) upwelling intensity and conse-
quently positive (negative) SST anomalies (Jacox et  al. 
2015b; Schwing et al. 2002). This atmospheric teleconnec-
tion is fast, with the CCS response lagging the tropics by 
a few weeks to a month, and upwelling anomalies during 
ENSO events typically persisting through ~April (Alexan-
der et al. 2002; Jacox et al. 2015b). Local SST anomalies 
are also impacted by coastally trapped waves that propa-
gate poleward into the CCS domain (Meyers et  al. 1998), 
deepening the thermocline and limiting the efficacy of 
coastal upwelling for cooling the ocean surface. While this 
remote oceanic influence has been shown to contribute sig-
nificantly to CCS anomalies during ENSO events (Chavez 
et  al. 2002; Frischknecht et  al. 2015), coastal waves are 
confined close to the coast (internal deformation radius of 
tens of km) and are not resolved by global climate forecast 
systems with horizontal resolution on the order of 1° (Alex-
ander et al. 2002). We therefore focus our analysis on the 
surface wind stress and net surface heat flux, though coastal 
waves are discussed further in Sect. 4.

In order for a given forcing (e.g., surface wind stress) to 
generate skill above persistence in the SST anomaly field, 
it must satisfy three conditions: (1) it must exert influence 
over SST anomalies in the model, (2) its influence in the 
model must be consistent with its influence in nature, and 
(3) it must be predictable. In Figs. 7 and 8, we use correla-
tion analyses to test these conditions for surface wind stress 
and net surface heat flux, respectively. For initialization 
months and lead times where ENSO-related forecast skill 
above persistence emerges (middle panel of Fig. 6), we cor-
relate the forecast and observed wind stress (or net surface 
heat flux) anomalies with the residuals from the persistence 
SST forecast, which tests conditions 1 and 2. We then cor-
relate the forecast and observed wind stress (or net surface 
heat flux) anomalies with each other to test condition 3. 

Fig. 5  Anomaly correlation coefficient for forecasts in the CCS 
region, averaged by top initialization month, middle lead time, 
and bottom forecast month. In other words, from a given skill grid 
(Fig.  2), these three panels represent means of the columns, rows, 
and diagonals, respectively. Skill is shown for persistence, individual 
models, the NMME ensemble mean, and a simple multiple linear 
regression using persistence plus the Niño 3.4 SST anomaly at ini-
tialization. For a detailed skill analysis of each model in the CCS and 
other marine ecosystems, see Hervieux et al. (2017)

Fig. 6  Left Forecast skill above persistence for CanCM4 in the CCS 
region. The contribution to skill above persistence by years that fol-
low a moderate to strong El Niño or La Niña (N = 10) and by all other 

years (N = 18) is shown in the middle and right panels, respectively. 
White dots indicate significant skill above persistence (95% confi-
dence level)
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Fig. 7  Left Forecast and middle observed relationships between 
meridional wind stress anomalies (x-axis) and SST persistence fore-
casts residuals (y-axis) during top moderate to strong ENSO events 
and bottom ENSO neutral periods. Positive wind stress anomalies 
indicate anomalous poleward winds. For each initialization month, 
data are plotted for the lead time when ENSO-related skill above per-
sistence emerges (i.e., in the middle panel of Fig. 6, the shortest lead 

time with a white dot for each initialization month). right Meridi-
onal wind stress forecast skill for the same periods, as indicated by 
the correlation between model forecast (x-axis) and observed (y-axis) 
wind stress. Color indicates the value of the Niño 3.4 Index the 
month preceding forecast initialization. Forecasts are from CanCM4, 
observations are from NOAA OISSTv2 for SST and ERA Interim for 
wind stress

Fig. 8  As in Fig. 7, but for surface heat flux in place of wind stress. Positive surface heat flux anomalies indicate anomalous heat flux into the 
ocean
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Note that we aim here to elucidate forecast skill above per-
sistence, not forecast skill itself. We therefore use the term 
‘SST residuals’ in reference to the residuals from persis-
tence forecasts, and we examine relationships between sur-
face forcing (wind stress or heat flux) and those residuals.

The key result of the analysis presented in Figs.  7 and 
8 is that all three of the aforementioned conditions for 
generating SST predictability are satisfied only by surface 
wind stress and only during ENSO events. Under those 
constraints, wind stress anomalies are strongly correlated 
(r = 0.8) with monthly SST residuals in both the CanCM4 
forecasts and the validation data, and the observed and 
forecast wind stress anomalies are strongly correlated with 
each other (r = 0.7). Thus, late winter/early spring wind 
stress anomalies are predictable during El Niño/La Niña 
events, and they generate a predictable response in the SST 
anomaly field that is not captured by a persistence forecast. 
Note that SST anomalies do not instantaneously respond 
to anomalous wind, and a 3-month trailing mean has been 
applied to the wind stress and surface heat flux to capture 
their cumulative impacts over several months.

In addition to identifying a predictable wind response to 
ENSO events as the main driver of SST forecast skill above 
persistence in the CCS, Figs.  7 and 8 illuminate several 
reasons why skill does not emerge from wind stress during 
ENSO-neutral periods or from surface heat fluxes under 
any ENSO conditions. During ENSO-neutral periods, wind 
stress anomalies are correlated with SST residuals quite 
strongly (r = 0.7) in observations and less so (r = 0.4) in 
CanCM4 forecasts (Fig. 7). However, there is no skill in the 
wind stress anomaly forecasts during these periods, and our 
third condition for generating predictability is not satisfied. 
Surface heat flux anomalies are positively correlated with 
SST residuals in CanCM4 forecasts during ENSO events 
(Fig. 8). However, the same relationship is not found in the 
observations, and our second condition for predictability is 
not satisfied. We will see later (Sect. 4.2) that the observed 
relationship between surface heat flux and SST anomalies 
has important fine scale structure within the CCS, which 
is not captured by the coarse resolution GCMs. Finally, in 
ENSO-neutral conditions, CanCM4 forecasts exhibit no 
relationship between surface heat flux anomalies and SST 
residuals, and our first condition for predictability is not 
satisfied.

3.4  Regional differences in forecast skill

Given that atmospheric forcing varies dramatically between 
regions within the CCS (Checkley and Barth 2009; Dor-
man and Winant 1995), it is reasonable to expect that the 
predictability derived from that forcing will vary as well. 
Furthermore, applications of seasonal SST forecasts often 
occur on scales smaller than the entire CCS (e.g., Kaplan 

et  al. 2016; Tommasi et  al.  2017). We therefore divide 
the CCS into northern, central, and southern sub-regions, 
with divisions at Cape Mendocino (~40.5°N) and Point 
Conception (~34.5°N), and evaluate SST forecast skill on 
these finer scales. While the patterns in the lead-initial-
ization month forecast skill matrix are similar between 
sub-regions, we find a marked latitudinal gradient from 
relatively high forecast skill in the north to relatively low 
forecast skill in the south (Fig.  9). In the northern CCS, 
forecast skill is routinely realized with anomaly correlation 
coefficients greater than 0.5, and February–April forecasts 
are significantly better than persistence at all leads. In the 
southern CCS there are some instances of skill above per-
sistence (again, in the February–April timeframe). How-
ever, when averaged across all initialization months and 
lead times, forecast skill in the southern CCS is no bet-
ter than persistence, and is worse than a simple statistical 
forecast based on persistence plus Niño 3.4 SST anomalies 
(Table 2).

When forecast skill above persistence is partitioned into 
ENSO events and ENSO-neutral periods, our findings for 
the entire CCS (Fig. 6) hold true qualitatively within each 
CCS sub-region (Fig.  10). In particular, dynamical skill 
above persistence in each region is generated almost exclu-
sively through forecasts during ENSO events. Consistent 
with the overall latitudinal skill gradient, the influence of 
ENSO on forecast skill is more pronounced to the north. 
The latitudinal skill gradient is also consistent with our 
finding that ENSO-related skill comes through the wind; 
ENSO drives variability predominately through anomalous 
wind forcing in the northern CCS, through remote ocean 
forcing (coastal waves) in the southern CCS, and through 
a combination of remote and local influences in the central 
CCS (Frischknecht et al. 2015; Hermann et al. 2009). The 
northern CCS therefore benefits most from skillful fore-
casts of ENSO-related wind anomalies, while SST forecast 
skill in the southern CCS likely suffers from the inability of 
global forecast systems to resolve coastal waves propagat-
ing up the west coast of North America.

4  Discussion

4.1  SST forecast skill in the CCS

Each of the coupled climate models contributing to Phase 
I of the NMME exhibits significant SST forecast skill in 
the CCS. At short lead times (0–4 months), much of that 
skill can be attributed to persistence, while at longer leads 
skill above persistence emerges and in some cases extends 
for the full length of the forecast (Fig. 2). Individual mod-
els, as well as the NMME multi-model mean, are particu-
larly skillful for forecasts of February–April, regardless 
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of initialization month. These late winter/spring forecasts 
also generate the greatest skill above persistence, as they 
coincide with times of low skill from persistence forecasts. 
In the case of CanCM4, we attribute the observed skill 
above persistence primarily to a predictable evolution of 
the CCS wind (and resultant upwelling) anomalies during 
moderate to strong ENSO events. Wind-driven upwelling 
anomalies during ENSO events typically onset in the CCS 
in ~December (Jacox et al. 2015b), consistent with a rapid 

atmospheric teleconnection from the tropics, and the lag 
between wind anomalies and their expression in the SST 
field results in the onset of SST forecast skill in ~January. 
Upwelling anomalies persist through April/May (Jacox 
et  al. 2015b) and continue to drive SST forecast skill, 
which extends slightly longer (through June or July) due to 
persistence of the wind-generated anomalies.

Though not explored in the present analysis, additional 
potential sources of predictability especially at long lead 
times include reemergence of subsurface SST anoma-
lies when the mixed layer deepens in winter (Alexander 
et al. 1999) and eastward advection of offshore anomalies 
into the CCS (Chikamoto et  al. 2015; Stock et  al. 2015). 
The presence of similar patterns of predictability among 
NMME models suggests that the skill-generating mecha-
nisms may be the same, though captured more faithfully 
in some models than in others. Performing the analysis 
herein on additional NMME members would likely prove 
illuminating for understanding how mechanisms of predict-
ability vary between models, as well as tradeoffs incurred 
by changing model formulations. For example, NCEP’s 

Fig. 9  Left 1982–2009 mean 
SST from OISSTv2, with CCS 
sub-regions outlined in black. 
Right CanCM4 SST forecast 
skill for northern, central, and 
southern CCS sub-regions. 
Markers are as in Fig. 2

Table 2  Anomaly correlation coefficient by CCS region averaged 
over all initialization months and lead times for persistence forecasts, 
a simple multiple linear regression using persistence plus the Niño 
3.4 SST (as in Fig. 4), and CanCM4 forecasts

Region Persistence Persis-
tence + Nino3.4

CanCM4 
forecast

Northern CCS 0.32 0.46 0.51
Central CCS 0.27 0.44 0.41
Southern CCS 0.29 0.44 0.31
All CCS 0.32 0.48 0.48
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CFSv2 performs slightly worse than CFSv1 in our CCS 
hindcasts, but offers improvements over CFSv1 in nearly 
all other North American LMEs (Hervieux et al. 2017).

While we have focused our analysis on the conditions 
and mechanisms that generate predictive skill in the CCS, 
just as important for improving forecasts is to understand 
the conditions and mechanisms that limit forecast skill. 
Observed meridional wind stress anomalies are strongly 
positively correlated (r = 0.7–0.8) with SST residuals dur-
ing periods of significant forecast skill above persistence 
(i.e., ENSO events) as well as during periods of limited 
SST forecast skill (i.e., ENSO-neutral years). However, 
wind stress anomalies are not forecast skillfully in the latter 
case (Fig. 7), and inaccurate forecasts of local CCS winds 
propagate through to errors in SST by a chain of events in 
which equatorward winds that are too weak (strong) pro-
duce upwelling that is too weak (strong) and SST that is 
too warm (cold). Furthermore, errors in the wind may 
introduce SST errors through inaccurate representation 
of offshore upwelling driven by wind stress curl as well 
as mechanical mixing and entrainment. Thus, in the CCS, 
forecast wind anomalies may be both the primary dynami-
cal source of seasonal SST predictability (during ENSO 
events when there is a predictable response in the wind) 
and a dominant limitation on seasonal SST predictability 

(during ENSO-neutral periods when wind anomalies are 
not predicted accurately). The difficulty of accurately 
forecasting winds on seasonal timescales is not surprising 
given the chaotic nature and short memory of the atmos-
phere (Goddard et al. 2001), though our findings do suggest 
promise at least when climate signals are large. Prior stud-
ies demonstrating ENSO variability as the primary driver 
of forecast skill for air temperatures and precipitation over 
the US continent (Barnett and Preisendorfer 1987; Quan 
et  al. 2006) have motivated consideration of conditional 
forecasts based on the ENSO state (Pegion and Kumar 
2013), and a similar approach may be fruitful for SST fore-
casts off the US west coast.

4.2  Implications for regional downscaling

Several difficulties arise from the relatively coarse reso-
lution of global climate forecast systems when applied to 
Eastern Boundary Upwelling Systems (EBUS) like the 
CCS, where fine-scale dynamics play an important role. 
First, upwelling is poorly represented for two reasons: 
(1) a horizontal grid resolution of order 1° in the ocean 
is too coarse to resolve the cross-shore scales of coastal 
upwelling (Jacox et al. 2014) and the temperature variabil-
ity that comes with it (Fig. 1). Even with model winds that 

Fig. 10  As in Fig. 6, but for northern, central, and southern sub-regions of the CCS
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accurately simulate those in nature, a coarse ocean leads 
to upwelling that is too diffuse and consequently to muted 
SST anomalies, especially within a narrow band (tens 
of km) next to the coast (Fig.  11), and (2) typical atmos-
pheric resolutions of 1° or more in global climate models 
are unable to resolve nearshore wind stress curl that can 
dramatically alter the cross-shore structure of upwelling 
and its impact on the temperature field (Capet et al. 2004; 
Small et  al. 2015). Second, coastally trapped waves also 
have characteristic cross-shore scales on the order of tens 
of km, and are unresolved in most global climate models 
(Alexander et al. 2002). These waves are important drivers 
of variability in the CCS during ENSO events, particularly 
off southern California where local wind variability has rel-
atively little impact (Frischknecht et al. 2015). The absence 
of this remote oceanic influence in global forecast systems 
is evident when comparing CanCM4 with a high resolution 
CCS reanalysis, which shows the southern CCS character-
ized by coastally intensified isopycnal depth anomalies dur-
ing El Niño (Fig. 11).

The strengths and limitations we have outlined for 
global forecast system application to the CCS suggest con-
siderable promise for dynamical downscaling in the region. 
Translating significant forecast skill in the broad-scale 
winds to a high-resolution regional model enables predict-
able upwelling variability to be resolved on the scales over 
which it occurs in nature, thereby improving representation 
of coastal SST anomalies. Indeed, coastal SST bias in the 
CCS can be largely eliminated by an order of magnitude 
increase in the ocean resolution of GCMs (from ~100 to 
~10  km), in combination with a moderate increase in the 
atmospheric resolution (from ~200 to ~50 km) (Delworth 
et al. 2012). The fidelity of regional models in EBUS can 
be further improved by statistically downscaling the GCM 
winds to the regional model resolution prior to performing 
the dynamical downscaling (Machu et al. 2015). Similarly, 
in the regional model a narrow coastal band is visible in 
which the net surface heat flux is negative while SST anom-
alies are positive during strong ENSO events (Fig.  11). 
Warm SST anomalies in this nearshore band result from 
coastal wave propagation and anomalously weak coastal 
upwelling, making it a weaker heat sink than normal and 
producing negative surface heat flux anomalies that act to 
damp nearshore SST anomalies. These fine-scale dynam-
ics are not captured by CanCM4 and other GCMs, nor is 
the poleward propagation of coastal waves that suppress the 
CCS thermocline during El Niño.

In dynamical downscaling experiments off the Oregon 
and Washington coasts, Siedlecki et al. (2016) found meas-
ureable forecast skill on timescales up to 4 months for 
physical and biogeochemical properties, particularly for 
bottom water properties on the continental shelf, but also 
incurred difficulties related to wind and shortwave radiation 

Fig. 11  Mean CCS response to strong El Niño events in left 
CanCM4 6-month lead forecasts and right the 0.1° resolution CCS 
reanalysis from UC Santa Cruz. Maps are composites of January–
March anomalies during the three strongest El Niños in our study 
period (1983, 1992, 1998). Plotted variables are, from top to bottom, 
SST, meridional wind stress, surface net heat flux, vertical velocity at 
50 m depth, and depth of the 26.0 kg  m−3 isopycnal surface
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biases in NCEP’s CFS forecasts. Based on their results, 
they encouraged additional seasonal forecasting efforts 
using global forecasts coupled to regional ocean models, 
and the hindcast skill of CanCM4 makes it an obvious 
choice to force downscaled models in the CCS. However, 
an ensemble of downscaled runs forced by multiple NMME 
members (even those with low skill) will enable better 
characterization of the forecast uncertainty in the regional 
domain, and likely an ensemble mean that performs better 
than any individual model (DelSole et al. 2013; Tippett and 
Barnston 2008).
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