
1. Introduction
Marine stakeholders aiming to proactively manage sensitive fisheries and marine ecosystems along the U.S. west 
coast may benefit from accurate forecasts of coastal ocean conditions in the California Current System (CCS). In 
particular, wildlife managers seek decision support tools to help prepare for ecosystem impacts associated with 
natural and anthropogenically forced climate variability and change (Jacox et al., 2020; Tommasi et al., 2017). As 
a result, there has been increased emphasis in recent years on the development (e.g., Kirtman et al., 2014; Vitart 
et al., 2017) and evaluation (e.g., Hervieux et al., 2019; Jacox et al., 2020; Shin & Newman, 2021; Siedlecki 
et al., 2016; Stock et al., 2015) of climate forecasting models for marine ecosystem applications.

Climate forcing modulates oceanic variables throughout the CCS on a continuum of timescales (from days to 
decades); however, there has been a particular focus on assessing and improving seasonal-to-interannual (S2i; 
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1–24 months) forecast skill (e.g., Jacox et al., 2020). While S2i is indeed a significant time horizon for marine 
ecosystem management decisions (Hobday et al., 2018), subseasonal-to-seasonal (S2S; 1–60 days) timescales 
also represent an important forecasting window for decision making. For example, short-term (e.g., days to 
weeks) predictions of nearshore sea level are important for improving infrastructure resilience to coastal inunda-
tion (DeMott et al., 2021; Nichols et al., 2019; Woodworth et al., 2019), and sea level is one of a suite of variables 
(also including temperature, currents, and others) that can be used as predictors of fisheries bycatch and ship-
strike risks in the CCS (Hazen et al., 2017, 2018; Howell et al., 2008; Thorne et al., 2019; Welch et al., 2019).

In the past several decades, there has been a concerted effort to assess S2S forecasting skill of atmospheric vari-
ables such as precipitation and near-surface air temperature (e.g., Vitart et al., 2017; Vitart & Robertson, 2018); 
however, there has been considerably less research evaluating S2S forecasts of marine resource-relevant oceanic 
variables. This discrepancy may in part be due to the slow evolution of the ocean compared to the atmosphere 
(e.g., Goddard et al., 2001), which could result in damped persistence as the best forecast of ocean variables on 
S2S timescales. Indeed, if that were the case, then there would be little utility for a dynamical ocean forecast at 
lead times of days to several weeks. However, there are a number of large-scale climate interactions that may 
provide so-called “forecast opportunities” (Stan et al., 2017), in which the forecast skill at a particular place is 
enhanced on S2S timescales due to the deterministic evolution of the climate system. For example, atmospheric 
teleconnections related to the El Niño-Southern Oscillation (ENSO), the Madden-Julian Oscillation (MJO), and 
other phenomena (Capotondi et al., 2019) may represent one such forecast opportunity. In the span of 2–3 weeks, 
an atmospheric Rossby wave train generated by anomalous tropical convection can alter the surface wind field 
near the U.S. west coast (Seo & Son, 2012; Simmons et al., 1983; Wallace & Gutzler, 1981) and lead to rapid 
shifts in the regional distribution of key ocean parameters, such as sea surface temperature (SST) and sea surface 
height (SSH). As a result, knowledge of the current ENSO or MJO phase at initialization may provide an indica-
tion of whether subsequent forecasts of oceanic variables in the CCS will be skillful at various lead times (Jacox 
et al., 2019).

Another potential S2S forecast opportunity may be related to oceanic teleconnections in the form of rapidly 
propagating ocean Kelvin waves (KW). These first-mode baroclinic KWs are typically forced in the western 
equatorial Pacific by the acceleration of anomalous near equatorial surface winds associated with intraseasonal 
atmospheric phenomena, such as the MJO, the monsoon, and extratropical intrusions (Hendon et al., 1998; Kess-
ler et al., 1995; Luther et al., 1983; Seiki & Takayabu, 2007; Zhang, 2001). In particular, westerly wind anomalies 
in the western equatorial Pacific drive anomalous downwelling, a depressed thermocline, and increased SSHs 
(Kutsuwada & McPhaden, 2002). The opposite is true for easterly surface wind anomalies.

Once formed, the thermocline and SSH signature of the KWs will propagate eastward with an average phase 
speed of ∼2.7 m/s, crossing the equatorial Pacific in ∼50–70 days (Busalacchi et al., 1983; Cravatte et al., 2003; 
Eriksen et al., 1983; Roundy & Kiladis, 2007; Rydbeck et al., 2019; Shinoda et al., 2008). Due to their role in 
modulating the eastern equatorial Pacific thermocline, intraseasonal KWs play a critical role in the development 
and intensification of ENSO events (e.g., Batstone & Hendon, 2005; Bergman et al., 2001; Karnauskas, 2013; 
Kessler & Kleeman, 2000; Kessler & McPhaden, 1995; McPhaden, 1992, 1999; McPhaden et al., 1988; McPhad-
en & Yu, 1999; Mosquera-Vásquez et al., 2014; Seo & Xue, 2005).

Upon reaching the South American coastline, KWs can continue propagating poleward as coastally trapped 
waves (CTWs) along the west coast of the Americas (Enfield & Allen, 1980; Enfield et al., 1987). Despite the 
meandering geometry of the coastline and the highly varying bathymetry of the coastal waters, observational 
and modeling studies have detected the wave energy associated with these CTWs well into the CCS and as far 
north as the Gulf of Alaska several months after leaving the equator (Frischknecht et al., 2015; Gómez-Valdivia 
et al., 2017; Johnson & O’Brien, 1990; Lyman & Johnson, 2008). However, during their poleward travel, the char-
acteristics and the phase speeds of these waves may differ from their tropical origins, as they can evolve into hy-
brids of topographic and baroclinic shelf waves (e.g., Enfield & Allen, 1983). This is further complicated by the 
local generation of CTWs along the coast by random wind forcing or by sloped bottom boundaries (Frischknecht 
et al., 2015; Hughes et al., 2019; Wang & Mooers, 1976)

Coastally trapped KWs have a narrow horizontal footprint, extending ∼100 km offshore in the tropics and nar-
rowing to ∼20 km at high latitudes. However, as they propagate, they strongly modify the vertical water column 
structure, which alters ocean parameters such as SSH, SST, and bottom temperature and can impact sensitive 
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marine ecosystems found along the shallow continental shelf (e.g., Ding 
et  al.,  2021; Jacox et  al., 2018). Additionally, elevated sea level driven by 
coastal KWs can lead to coastal inundation, threatening coastal infrastructure 
and endangering people (Jacox et al., 2020; Widlansky et al., 2017; Wood-
worth et al., 2019).

Given the influence of CTWs on U.S. west coast sea level, and potentially on 
marine ecosystems more broadly, it would be beneficial to determine whether 
these waves act as a forecast opportunity and contribute to enhanced forecast 
skill of coastal ocean variables on S2S timescales. In this study, we use a 
combination of in situ measurements and a high-resolution ocean reanalysis 
to identify intraseasonal ocean waves propagating from the western equatori-
al Pacific to the Gulf of Alaska. In particular, we introduce an intensity index 
that describes the time variability of CTWs that have traveled along the U.S. 
west coast over the past 25 years. We then use these novel observational tools 
to conduct the first S2S skill assessment of coastal CCS SSH using a state-
of-the-art forecast model. Our focus on coastal SSH is an important first step 
in validating the physical evolution of the S2S ocean forecasts since SSH is 
dynamically linked to many other impactful oceanic variables through its in-
fluence on thermocline depth, upwelling rates, and horizontal current veloci-
ties (Jacox et al., 2015). We find that dynamical forecasts of SSH in the CCS 
are significantly more skillful than persistence at leads of up to 7 weeks. We 
further show that this forecast skill increases when the forecast is initialized 
with a strongly propagating CTW signature.

2. Data and Methods
2.1. High-Resolution Ocean Reanalysis

To characterize intraseasonal ocean wave variability in the historical record, 
we use the GLORYS ocean reanalysis version 12v1 (Lellouche et al., 2021). 
Generated by the Copernicus Marine Environmental Monitoring Service 
(CMEMS), GLORYS offers daily mean and monthly mean ocean variables 
at 1/12° horizontal resolution with 50 vertical levels. The reanalysis is gener-

ated using the Nucleus for European Modeling of the Ocean (NEMO) ocean model, forced at the surface by the 
European Center for Medium-Range Weather Forecasts (ECMWF) ERA-Interim atmospheric reanalysis. Data 
are available from 1993 to 2018, during which the model assimilates along-track satellite altimetry, satellite SST, 
sea ice concentrations, and in situ profiles of temperature and salinity from the Coriolis Ocean database ReAnal-
ysis (CORA) data set (Szekely et al., 2019). Unless otherwise specified, we analyze daily mean GLORYS SSH 
anomalies, which are relative to an unsmoothed long-term daily mean climatology from 2000 to 2018.

Its high spatial and temporal resolution make GLORYS an ideal tool to characterize the fine-scale structure of 
intraseasonal CTWs as they propagate through the CCS. However, even with 1/12° horizontal resolution, small-
scale yet potentially important coastal features may not be well resolved. Additionally, satellite altimetry has 
known errors on small scales near coastlines (Vignudelli et al., 2019), suggesting that GLORYS may be more 
reliant on the underlying ocean model in these regions. Therefore, in order to gain confidence in GLORYS ability 
to accurately simulate coastal SSH variability, we first verify GLORYS output using in situ measurements of 
sea level from nine tide gauges found along the U.S. west coast (Figure 1, black dots). The tide gauges are not 
assimilated into GLORYS, and therefore offer an independent metric by which to verify the reanalysis. At every 
station, the nearest GLORYS grid cell does an excellent job of capturing the monthly mean and daily mean sea 
level variability measured by the tide gauge, with anomaly correlation coefficients ranging from 0.84 in the Pa-
cific Northwest to 0.9 in Southern California for monthly means and 0.74 to 0.84 for daily means (Figure 2 and 
Table 1). As a result, we can use GLORYS to assess the S2S forecast model. See Supporting Information for more 
details on the tide gauge comparisons.

Figure 1. Kelvin wave propagation pathway on the GLORYS grid. Red 
shading along equator indicates 2°S–2°N. The equatorial pathway extends 
westward beyond the figure bounds to 150°E. Red shading along coast 
marks GLORYS 1/12° × 1/12° grid cells with bottom depths shallower than 
400 m. Colored boxes denote coastal S2S model 1° × 1° grid cells. Box color 
corresponds to the respective California Current System (CCS) regional 
averages. Black dots mark the locations of the nine tide gauges used to verify 
GLORYS monthly mean SSH (see also Figure 2). Black text and lines denote 
geographical waypoints along the Kelvin wave pathway.
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2.2. S2S Reforecasts

Reforecasts of SSH are obtained from the S2S weather prediction database hosted by ECMWF. While this data-
base archives output from 11 S2S forecasting models, currently ECMWF is one of only three modeling centers 
that makes SSH reforecasts publicly available. Here we use the ECMWF model version CY46R1. The ocean 
model is NEMO3.4.1, which is run at 0.25° horizontal resolution with 75 vertical levels, although the ocean 
variables are only available at 1° resolution for analysis. Reforecasts for 46 days are initialized every 3–4 days 
beginning January 2, 2000. Each reforecast consists of 11 total ensemble members, which include: (1) A single 
control forecast, initialized at day 0 with data from the ERA5 atmospheric reanalysis and the Ocean Reanaly-

sis System 5 (ORAS5), and (2) A set of 10 perturbation forecasts that have 
slightly altered initial conditions.

Unless otherwise stated, comparisons between the ECMWF SSH reforecasts 
and GLORYS are for the period January 2, 2000 to November 16, 2018, 
which includes a total of 1,982 forecasts. Since the model will drift toward 
its preferred (biased) state over the course of a forecast, we calculate SSH 
anomalies relative to a lead-dependent climatology from 2000 to 2018. Skill 
evaluation is based on the squared anomaly correlation coefficient (R2) be-
tween the ensemble mean S2S SSH anomalies and GLORYs SSH anoma-
lies as a function of lead time and initialization day. We also calculate the 
root-mean-square error (RMSE) between the S2S anomaly forecasts and the 
GLORYS SSH anomalies (see Hervieux et al., 2019, Equations 1 and 2 for 
more details).

In order to capture the distinct biological and physical regimes found along 
the U.S. west coast (Checkley & Barth,  2009; Dorman & Winanat,  1995; 
Jacox et  al.,  2019), we evaluate forecast skill separately for the Southern, 
Central, and Northern CCS, which is divided at Pt Conception (∼34.5°N) 
and Cape Mendocino (∼40.5°N) and is illustrated by blue, green, and purple 
grid boxes in Figure 1. When comparing to the S2S data, GLORYS daily 
mean SSH anomalies were averaged separately in these same 1° × 1° boxes. 
The GLORYS data in each region were then subsampled in time to match the 

Figure 2. Monthly mean sea surface height (SSH) anomalies (cm) from nine tide gauge stations along the U.S. west coast (black) and the nearest GLORYS grid cells 
(red). Tide gauge locations are in the subpanel titles and are marked by black dots in main text Figure 1. Correlations and root-mean-square error (RMSE) values 
between the GLORYS and tide gauge data at each station are in Table 1.

Tide gauge

Monthly mean Daily mean

Correlation 
(R)

RMSE 
(cm)

Correlation 
(R)

RMSE 
(cm)

Neah Bay, WA 0.84 5.04 0.81 9.37

Willipa, WA 0.85 5.27 0.84 10.74

South Beach, OR 0.88 4.54 0.82 8.59

Port Orford, OR 0.86 4.44 0.81 8.04

Humboldt Bay, CA 0.84 4.53 0.74 7.92

Arena Cove, CA 0.88 3.17 0.75 6.86

Monterey, CA 0.91 2.23 0.78 4.70

Santa Monica, CA 0.90 2.22 0.79 4.03

La Jolla, CA 0.90 2.28 0.78 4.20

Note. Statistics are separated for monthly mean and daily mean values. All 
correlations are significant at 95% confidence using a Student's t test. See 
Figure 2 for monthly mean time series and precise tide gauge coordinates.

Table 1 
Correlation and Root-Mean-Square Error (RMSE; cm) Values Between 
Sea Level Anomalies Taken at Nine Tide Gauges Along the US West Coast 
(Figure 1; Black Dots) and Those From the Nearest Grid Cell in the 
GLORYS Ocean Reanalysis
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initialization and forecast dimensions of the S2S data. All comparisons between the S2S model and GLORYS are 
with unfiltered SSH anomalies.

The S2S forecast skill is further compared against damped persistence, which assumes that SSH anomalies 
decay toward zero over some characteristic timescale. Due to the slow evolution of the ocean (e.g., Goddard 
et al., 2001), damped persistence is often a skillful forecast for many oceanic variables. Additional skill above 
persistence indicates the added value of a dynamical forecast system. The damped persistence forecast at a given 
location x and lead t is equal to the GLORYS SSH anomaly at initialization multiplied by the SSH autocorrelation 
function at location x and lag t. Forecast skill significance was determined following Stock et al. (2015), which 
uses a Fisher's Z transformation (Fisher, 1915, 1924; Lund et  al., 2000) to determine whether the dynamical 
forecast R2 is: (a) Significantly above 0, and (b) Significantly greater than the persistence forecast R2. For our 
comparisons, we use a 90% confidence interval to denote significance. See Stock et al. (2015) for more details.

2.3. Kelvin Wave Hovmöller Pathway

In order to capture the full lifecycle of an ocean KW—from an equatorially trapped disturbance originating in the 
western Pacific all the way to a CTW in the Gulf of Alaska—we reduce the GLORYS SSH data from 3D (i.e., 
time × latitude × longitude) into 2D (time × space; i.e., a Hovmöller), where the new spatial dimension traces 
the ∼30,000 km pathway followed by a typical propagating KW (Figure 1; red shading). Starting in the western 
equatorial Pacific at 150°E, the pathway runs eastward to the South American coast in the eastern equatorial 
Pacific (SA; Figure 1). From there, the pathway's positive direction follows the Central American coastline going 
northward, ultimately entering the Gulf of California on the eastern side (GC-E; Figure 1) before tracing the inner 
coastline of the Sea of Cortés, flowing southward, and exiting the Gulf of California on the western side (GC-W; 
Figure 1). The pathway then wraps around the Baja California Peninsula, continuing northward along the U.S. 
west coast to Canadian waters (CN; Figure 1). A KW traveling at typical phase speeds of ∼2.7 m/s (e.g., Roundy 
& Kiladis, 2007; Shinoda et al., 2008; Strub & James, 2002) would transit the full pathway in ∼120 days.

To map the GLORYS SSH data onto this pathway, we meridionally average SSHs from 2°S-2°N along the 
equatorial leg from 150°E to SA (Figure 1; equatorial red shading). We then only consider grid cells along the 
Central and North American coastlines with bottom depths shallower than 400m (Figure 1; coastal red shading) 
and zonally average SSH at each latitude, such that at every latitude along the coast we have an approximation 
of the nearshore SSH. We then concatenate the coastal zonal averages in the along-path direction to create our 
one-dimensional space following the pathway. Along-path anomalies are then plotted against the total distance 
traveled (in km) moving from the western equatorial Pacific to the Gulf of Alaska. Care was taken near the Gulf 
of California to only zonally average grid cells associated with the current location along the path (e.g., we did 
not zonally average all grid cells at the same latitude across Baja California and the Gulf of California, where the 
path crosses the same latitude three times).

2.4. Wavenumber-Frequency Spectral Analysis

To assess the S2S model's ability to accurately simulate ocean KWs, we compare the wavenumber-frequency 
spectra of equatorial SSH anomalies between GLORYS and the S2S model at different leads (see Section 3.4). 
In each case, the spectrum is calculated using unfiltered SSH anomalies averaged 2°S–2°N from 170°W to the 
South American coastline. This results in matrices with dimensions M × N where M is space and N is time. For 
GLORYS, the time dimension includes continuous daily mean data from January 1, 2000 to December 31, 2018 
(N = 6,935, ignoring leap days) and the spatial dimension is on the GLORYS 1/12° grid (M = 1,098). For the S2S 
model, in order to create a continuous time series for analysis we linearly interpolate the S2S forecasts (initialized 
every 3–4 days) to daily resolution. This results in an estimated 46-day forecast every day from January 2, 2000 
to November 16, 2018 (N = 6,889, ignoring leap days). The S2S forecast spatial dimension is on the 1° ECMWF 
grid (M = 90).
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3. Results
3.1. Sample Kelvin Waves in the GLORYS High-Resolution Ocean Reanalysis

To illustrate propagating intraseasonal KWs waves in the GLORYS high-resolution ocean reanalysis, we show 
Hovmöller diagrams of daily mean SSH anomalies along the KW pathway from January 1, 2015 to April 30, 
2016 (Figure 3). This time period is of particular interest to the marine ecosystem impacts community due to 
the development of the extreme 2015/2016 El Niño event, which contributed to the evolution and persistence of 
extremely warm ocean temperatures along the U.S. west coast related to the 2013–2016 Northeast Pacific marine 
heatwave (Amaya et al., 2016; Bond et al., 2015; Jacox et al., 2016).

Using unfiltered GLORYS data (Figure 3a), we see elevated SSH anomalies throughout this time period. How-
ever, embedded in the large-scale feature are bands of SSH anomalies propagating in the positive along-path 
direction. These banded structures originate in the western equatorial Pacific and propagate eastward toward the 
South American coast (marked by the vertical black line labeled “SA”). Propagating positive SSH anomalies are 
consistent with downwelling KWs, which grow in amplitude with each successive wave as the 2015/2016 El Niño 
matures through boreal winter.

Upon reaching the South American coastline, the downwelling KWs appear to transition into CTWs along the 
Central and North American coastlines (i.e., between SA and CN). However, there is also a great deal of noise 
in the SSH anomaly field that is unrelated to downwelling KW propagation, making it difficult to isolate each 
discrete wave as it passes a particular location. This noise may be due to local wind forcing generated by stochas-
tic weather or by remote teleconnections associated with the developing El Niño (i.e., the atmospheric bridge). 
To more clearly identify the KWs as they propagate along the path, we first apply a wavenumber filter which 
retains only positive wavenumbers (i.e., waves traveling in the positive along-path direction; Figure 3b). We then 
bandpass filter the data using a 20–180 days Lanczos filter to isolate intraseasonal variability (Figure 3c). With 
both the wavenumber and time filtering applied, the individual KWs are readily apparent as coherent bands of 
propagating positive or negative (in the case of upwelling KWs) SSH anomalies.

The KWs during this period have diverse life cycles. For example, the downwelling KW beginning in early March 
2015 originates in the western equatorial Pacific and transits the width of the equatorial Pacific in ∼70 days, but 
the wave energy dissipates up the Central American coastline before reaching the Gulf of California. In contrast, 
there are CTWs that strongly project up the coastline, but are only weakly linked to prior equatorial anomalies. 
These features may be related to CTWs generated by local wind forcing, independent of preceding equatorial 
wave conditions (Enfield & Allen, 1983; Frischknecht et al., 2015). Finally, there are a number of downwelling 

Figure 3. (a) Unfiltered, (b) wavenumber filtered, and (c) wavenumber and time filtered sea surface height (SSH) anomalies (cm) along the Kelvin wave pathway from 
January 1, 2015 to April 30, 2016. Vertical black lines correspond to geographical waypoints indicated in Figure 1. Dashed gray lines indicate a phase speed of 2.7 m/s. 
Upper x axis marks the distance along the pathway in kilometers. Lower x axis marks the approximate latitude/longitude coordinates at select locations along the path.
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KWs (and one upwelling KW beginning in mid-June 2015) that clearly transit the full ∼30,000 km pathway, 
from the western equatorial Pacific to the eastern equatorial Pacific (in ∼60–70 days) and then northward up the 
coastline to the Gulf of Alaska (in ∼50–60 days; Figure 3c).

The diversity of KWs and CTWs during this time period highlights the need to consider various dynamical 
drivers, both remote (e.g., from the tropics) and local (e.g., along the coast), that may excite intraseasonal coastal 
waves capable of impacting the CCS. We will discuss this topic in more detail in Section 3.3. Regardless of flavor, 
however, each wave propagates at a phase speed of ∼2.7 m/s (Figure 3; dashed gray lines), even those that transit 
complicated coastlines and bathymetric structures such as the inner coastline of the Gulf of California (i.e., GC-E 
to GC-W). There is, however, evidence of a slight phase speed increase as the CTWs wrap around Baja California 
and make their way along the U.S. west coast (i.e., GC-W to CN).

3.2. Kelvin Wave EOF Patterns

Before evaluating the S2S reforecasts and determining whether CTWs inherently improve forecast skill, we must 
quantify the overall time variability of KWs as they travel along the equator and potentially through the CCS. Do-
ing so allows us to stratify the S2S forecasts based on the presence (or lack) of CTWs at forecast initialization. As 
a first step, we characterize intraseasonal KWs propagating along the equatorial Pacific following the methods of 
Rydbeck et al. (2019). In short, this method involves computing empirical orthogonal functions (EOFs) of GLO-
RYS SSH anomalies along the equatorial portion of the KW path (i.e., 2°S–2°N averaged from 150°E until the 
South American coastline; referred to as “Equator only”). The SSH anomalies for this procedure were calculated 
by removing the first three harmonics of the seasonal cycle from the data. Prior to the EOF calculation, the SSH 
anomalies were wavenumber filtered to only retain positive wavenumbers (i.e., waves propagating in the positive 
along-path direction) and then bandpass filtered in time using a 20–180 days Lanczos filter (as in Figure 3c).

To illustrate the relevant EOF spatial patterns, we regress filtered SSH anomalies along the KW pathway onto the 
corresponding principal components (PCs; Figure 4a). Results are similar if we instead regress unfiltered data. 
The first two Equator only EOFs explain 39.8% and 35.3% of the SSH variability, respectively. The first EOF is 
characterized by a SSH dipole, with negative anomalies in the western equatorial Pacific and positive anomalies 
in the eastern equatorial Pacific. The second EOF pattern is dominated by large positive SSH anomalies in the 
central equatorial Pacific. Each EOF only weakly projects on the Central American coastline (i.e., between SA 
and GC-E). The corresponding PC1 and PC2 are phase lagged with a correlation of −0.78 when PC1 leads by 
14 days (Figure 4d; blue line). This indicates that, when combined, EOF1 and EOF2 represent a wave that propa-
gates SSH anomalies from west to east along the equatorial Pacific. Both PC1 and PC2 also have spectral power 
peaking near 70 and 50 days (Figure S1a in Supporting Information S1), consistent with the observed broadband 

Figure 4. The first two empirical orthogonal functions (EOFs) of filtered sea surface height (SSH) anomalies (cm) in the (a) Equator only, (b) Equator + Coast, and 
(3) Coast only domains. The x axis notation and vertical black bars are the same as in Figure 3. (d) Lag correlations between each PC1 and PC2 pair. Stippling denotes 
significant correlations at a 90% confidence interval.
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power of KWs (Kessler et al., 1995; Shinoda et al., 2008). Based on these results, we interpret the Equator only 
EOF1 and EOF2 as describing equatorially trapped intraseasonal KWs, consistent with Rydbeck et al. (2019).

As discussed in the previous section, CTWs entering the CCS can originate in the tropical ocean and/or be 
generated locally by wind variability associated with stochastic weather noise or atmospheric teleconnections 
emanating from the tropics. Therefore, even in a lagged sense, it is unlikely that the time variability described by 
the Equator only PCs is representative of the full scope of CTWs that impact the U.S. west coast. In an attempt 
to better sample the range of CTWs flavors that propagate through the CCS, we repeat the above EOF analysis 
for two additional domains, which include: (1) All along-path grid cells, from 150°E on the equator to the Gulf 
of Alaska (referred to as “Equator + Coast”), and (2) Only the coastal grid cells poleward of SA (referred to as 
“Coast only”).

The first two Equator + Coast EOFs (Figure 4b) explain 22.3% and 21.9% of the SSH variability, respectively. 
These EOFs are very similar to the first two Equator only EOFs, but with SSH patterns that are shifted in the 
positive along-path direction, including a stronger projection along the Central American coastline (SA to GC-E). 
Additionally, the corresponding PCs show a similar lagged relationship between the Equator + Coast EOF1 and 
EOF2 (Figure 4d; orange line), with similar spectral peaks at 70 and 50 days (Figure S1b in Supporting Informa-
tion S1). Taken together, we interpret the Equator + Coast EOFs as describing propagating intraseasonal KWs, 
but with a greater focus on those KWs that make the transition from the equator to the coast upon reaching South 
America. In particular, it is apparent from comparing Figures 4a and 4b that greater amplitude equatorial waves 
that favor the eastern side of the equatorial strip would tend to lead to larger amplitude coastal waves.

The first two Coast only EOFs explain 31.4% and 30.2% of the coastal SSH variability, respectively. These 
EOFs have a now familiar off-set dipolar structure, except the order of the EOF patterns is switched relative to 
the other two domains (e.g., Coast only EOF1 is analogous to the other domains' EOF2, and vice versa). Addi-
tionally, the Coast only EOF anomalies extend well into the CCS, with peak anomalies near the entrance to the 
Gulf of California and much weaker anomalies along the equatorial Pacific. The Coast only PC1 and PC2 have 
similar wave-like phase lags (Figure 4d; green line), but the peak correlations between the two PCs are found at 
shorter lags, suggesting a more rapidly propagating wave. The shorter timescale is reflected in the corresponding 
power spectra, which show a shift toward shorter periods due to a reduction in power at ∼70 days (Figure S1c). 
These results suggest that the Coast only EOFs are describing the evolution of CTWs across dynamical origins, 
ranging from equatorially trapped KWs that continue along the coastline to locally generated CTWs (Enfield & 
Allen, 1983; Frischknecht et al., 2015).

3.3. Coastal Kelvin Wave Index

Kelvin wave indices can be derived from the information contained in each pair of normalized PCs. Specifically, 
the amplitude for a given KW index at time step t is defined as:

Amplitude(𝑡𝑡) =

√

𝑃𝑃𝑃𝑃1(𝑡𝑡)
2
+ 𝑃𝑃𝑃𝑃2(𝑡𝑡)

2 (1)

In addition to the amplitude, the phase relationship between each pair of PCs can be computed to isolate the phys-
ical location of a wave at a given time step (see Supporting Information). Compositing filtered SSH anomalies 
on both phase and amplitude confirms that our EOFs capture waves that propagate in the positive along-path 
direction (Figure S2 in Supporting Information S1).

The amplitudes for the Equator only KW (E-KW) index, the Equator + Coast KW (EC-KW) index, and the Coast 
only KW (C-KW) index are shown in Figures 5a–5c. Peaks in the indices often occur during strong El Niño 
events (red shading), highlighting ENSO's role in driving intraseasonal KWs along the equator and up the North 
American coastline. There are also periods of elevated intensity in each of our indices that do not correspond with 
ENSO, which may be associated with the MJO or other sources of wind forcing in the western equatorial Pacific 
(Hendon et al., 1998; Kessler et al., 1995; Luther et al., 1983; Seiki & Takayabu, 2007; Zhang, 2001). Indeed, 
the E-KW, EC-KW, and C-KW indices are all phase lagged with the OLR-based MJO (OMI) index (Kiladis 
et al., 2014) with significant correlations of 0.34, 0.29, and 0.2 when the OMI leads by 12, 13, and 70 days, 
respectively (not shown).
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The lagged relationships between our indices are consistent with our physical interpretation of the corresponding 
EOFs. For example, the peak correlation between the E-KW index and the EC-KW index is 0.88 and it occurs 
when the E-KW index leads by 3 days (Figure 5d, blue line). The high correlations near zero lag suggest the EC-
KW index is primarily describing the same time variability of equatorially trapped KWs as the E-KW index, but 
the slightly higher correlations when the E-KW index leads reflects the additional lagged information of equato-
rial KWs transitioning onto the South American coastline captured by the EC-KW index.

Perhaps of more interest are the lag correlations of the E-KW and EC-KW indices with the C-KW index (Fig-
ure 5d, green and orange lines). The peak correlation between the E-KW index and the C-KW index is 0.43 when 
the E-KW index leads by 44 days, while the peak correlation between the EC-KW index and the C-KW index 
is 0.47 when the EC-KW index leads by 14 days. The significant correlations at long leads support our earlier 
conclusion that the C-KW index partially represents the time variability of coastally trapped KWs that originated 
along the equatorial Pacific. However, the comparatively lower maximum lag correlation between the equatorial 
indices and C-KW index further reinforces that the C-KW index is also capturing CTW variability that is locally 
forced and independent of tropical ocean waves. Therefore, of our three indices, the C-KW index is the most 
complete representation of the time variability of CTWs (regardless of dynamical origin), and may be thought of 
more broadly as a “CTW index.” However, for simplicity and to be consistent with the notation of the other two 
indices, we will refer to it as the “C-KW index” in the remaining sections.

3.4. S2S Forecast Skill Assessment

In this section, we use our new C-KW index to assess whether CTWs provide an opportunity for enhanced S2S 
forecast skill in the CCS. To begin, we first evaluate the S2S ensemble mean forecast skill as a function of lead 
time and initialization day in the three CCS subregions (outlined Figure 1). In the South and Central CCS regions, 
the S2S model produces significant forecast skill (e.g., R2 greater than 0 at the 90% confidence level) at nearly all 
initializations and all lead times (Figures 6a and 6b). While impressive, much of this skill is derived from damped 
persistence, as the SSH anomalies in these regions are highly autocorrelated within our 46 days forecasting win-
dow (Figure S3 in Supporting Information S1). Despite the strong day-to-day persistence, however, there are clus-
ters of initialization days throughout the year in each region where the dynamical forecast is significantly more 
skillful than persistence at leads greater than ∼15 days (red stippling). For example, the South CCS S2S forecasts 
show consistent dynamical skill above persistence at long leads when initializing in the summer and early fall. 
The Central CCS S2S forecasts significantly exceed persistence forecast skill primarily when initializing in sum-
mer. Further, the RMSE values in the South and Central CCS tend to be lowest (∼2–3 cm) when the dynamical 

Figure 5. Amplitudes for the (a) Equator only KW (E-KW) index, (b) the Equator + Coast KW (EC-KW) index, and (c) the Coast only KW (C-KW) index. Red and 
blue shading indicate El Niño and La Niña periods, respectively. Dashed black lines mark the threshold used to determine robust Kelvin wave activity in each index. 
(d) Lag correlations between each combination of the E-KW index, the EC-KW index, and the C-KW index. The first index listed in each row of the legend leads 
at negative lags. For example, for lag correlations between the E-KW index and the EC-KW index (blue), the E-KW index leads at negative lags. Stippling denotes 
significant correlations at a 90% confidence interval.
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forecast is significantly more skillful than persistence (Figures 6d and 6e). This suggests that the dynamical fore-
casts are not only capturing the temporal evolution of SSH anomalies in these regions, but also their magnitude.

In comparison to the South and Central CCS regions, the North CCS S2S forecast skill is weaker overall and 
the RMSE values are larger, although the correlation values are still generally significantly above 0 (Figures 6c 
and 6f). Additionally, the North CCS forecast skill is more seasonally dependent, with the highest forecast skill 
at all leads occurring in the fall and winter and the lowest occurring in the spring and summer. Even though the 
forecast skill is generally weaker in the North CCS, the dynamical forecasts initialized in the late fall and winter 
show significant skill above persistence at shorter leads (5–20 days). In the summer, the dynamical forecasts are 
also significantly more skillful than persistence, but at leads greater than ∼20 days.

The weaker overall forecast skill and the higher overall RMSE values in the North CCS region is likely due to 
increased weather noise at higher latitudes, which would impart stronger atmospheric forcing on the upper ocean 
and increase SSH variability along the coast. The increased SSH variance in the North CCS region is apparent 
when comparing the tide gauge data at northern latitudes (Figures 2a–2c) with those from southern latitudes 
(Figures 2g–2i). Increased variance also tends to decrease day-to-day persistence of SSH anomalies (as seen in 
the North CCS autocorrelation function; Figure S3 in Supporting Information S1), which would explain how the 
dynamical forecasts skill are significantly better than persistence at shorter leads for much of the year.

Figure 6. (a–c) Squared anomaly correlation coefficients (R2; shading) between the S2S sea surface height (SSH) anomaly forecasts and GLORYS SSH anomalies 
as a function of forecast lead and initialization day. (d–f) As in (a–c), but for root-mean-square error (RMSE) (cm) between the S2S SSH anomaly forecast and the 
GLORYS SSH anomalies. Forecast skill is shown for (left column) the South California Current System (CCS), (middle column) the Central CCS, and (right column) 
North CCS. Forecast data for each region were computed by averaging together SSH anomalies at the coastal S2S grid cells within each domain (see Figure 1 colored 
boxes for regional boundaries). Black stippling in (a–c) indicates insignificant forecast skill. No stippling indicates forecast skill significantly greater than 0, but not 
significantly greater than that of a persistence forecast. Red stippling indicates forecast skill that is both significantly greater than 0 and significantly higher than that of 
the corresponding persistence forecast. All significance indicators are relative to a 90% confidence interval.
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In order to further evaluate the S2S forecast skill in the context of propagating KWs, we assess the S2S model's 
ability to accurately simulate the physical evolution of these waves using wavenumber-frequency spectra. The 
GLORYS wavenumber-frequency spectrum shows two major features (Figure  7a). The first includes a spec-
tral peak at negative (westward propagating) wavenumbers following the dispersion curve of equatorial Rossby 
waves. The second spectral peak occurs near wavenumbers 2–3 and periods of 50–70 days, which closely cor-
responds to first baroclinic KWs propagating eastward with a phase speed of ∼2.7 m/s (Shinoda et al., 2008). 
Comparing to the S2S model spectra of forecasted SSH anomalies at increasing leads, we see a decrease in power 
of the major Rossby wave and KW spectral peaks as lead time increases (Figures 7b–7g). This reduction in power 
is likely due to the decrease in overall equatorial SSH variance seen in the S2S model at increased lead times (Fig-
ure S4 in Supporting Information S1). However, the presence and consistency of the two spectral peaks at long 
leads suggests the S2S model is credibly simulating equatorial wave dynamics over the duration of the forecasts.

Finally, we stratify the S2S ensemble mean forecast skill in each of the CCS subregions based on the intensity 
of our C-KW index at forecast initialization (Figure 8). Doing so will allow us to determine if CTWs provide 
an opportunity for enhanced forecast skill. We first compute weekly averages of the S2S ensemble mean fore-
casts and the resampled GLORYS data. Each week represents a 7-day average (i.e., week 1 corresponds to the 
average forecast at days 1–7), except for week 7, which is the average forecast at days 43–46. We then calculate 
the lead-dependent R2 of the weekly averaged forecasts that fall within three C-KW index intensity categories—
Weak, Strong, or Extreme—at initialization. These intensity categories are defined as terciles based on the distri-
bution of all C-KW index values that fall on a forecast initialization day and are also above 1. The lower bounds 
of the terciles are 1.33 and 1.84. For example, a forecast falls within the “Weak” KW category if it is initialized 
with a C-KW index value between 1 and 1.33. The Weak, Strong, and Extreme KW categories have sample sizes 
of 348, 348, and 358, respectively. They are then comparable to initializations with no significant KW activity 
(i.e., C-KW index values below 1), which has a sample size of 928.

Focusing first on all initialization days (i.e., regardless of C-KW index intensity, N = 1,982), the persistence 
forecasts (Figure 8; dashed black lines) in each CCS subregion have higher skill than the dynamical forecasts 

Figure 7. Wavenumber-frequency spectra of unfiltered sea surface height (SSH) anomalies averaged 2°S–2°N from 170°W to the South American coastline in (a) 
GLORYS and (b–g) the S2S forecast model at different lead times. Dashed gray lines mark periods of interest. Black lines at negative wavenumbers mark the dispersion 
relation for equatorial Rossby waves. Black lines at positive wavenumbers mark wave phase speeds of 2.7 m/s.
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(solid black lines) at short lead times (∼1–2 weeks). This is consistent with Figure 6, and may be expected given 
the slow decay of the SSH autocorrelation function at lags of only a couple weeks. At longer leads, however, the 
dynamical forecasts in the South and North CCS show enhanced predictability. In the South CCS, the all-days 
dynamical forecast skill is significantly higher than the all-days persistence skill in weeks 3–7, explaining over 
20% more of the SSH variance at these leads. In the North CCS, the forecast skill is lower overall, but the all-days 
persistence forecast skill rapidly declines from weeks 1–3 due to the stronger weather-related SSH variability at 
these latitudes. As a result, the all-days dynamical forecasts become significantly more skillful than persistence 
in weeks 2–7, also explaining over 20% more of the SSH variance at these leads.

How does coastal KW (or more broadly CTW) intensity at initialization impact dynamical forecast skill in each 
region? When initializing with Strong KW conditions in the South CCS (Figure 8a; orange lines), the dynamical 
forecast skill is significantly higher than persistence at weeks 3–7, as well as higher than the all-days dynamical 
forecast skill at all leads. Dynamical forecast skill is further enhanced in the South CCS at weeks 5–7 when ini-
tializing with Extreme KW conditions (Figure 8a; purple lines), explaining over 40% more SSH variance than the 
Extreme KW persistence forecast and over 10% more SSH variance than dynamical forecasts initialized without 
significant KW activity (e.g., No KW days; blue lines) in week 7. Initializing forecasts during Weak KW days 
(Figure 8a; yellow lines) does not appreciably impact the forecast skill in this region.

In the Central CCS, accounting for KW intensity at initialization yields similar dynamical forecast skill enhance-
ments as those seen in the South CCS (Figure 8b). However, none of the dynamical forecasts are significantly 
more skillful than persistence at the 90% confidence level. In the North CCS, dynamical forecasts initialized 
on Strong KW days have higher skill than the all-days dynamical forecasts at weeks 1–5 (Figure 8c). Similarly, 
initializing on Extreme KW days produces week 7 dynamical forecasts that explain 30% more SSH variability 
than the persistence forecast and 6% more SSH variability than the dynamical forecasts initialized on No KW 
days. The presence of Weak KW conditions at initialization lowers the dynamical forecast skill at all leads (even 
relative to No KW days), but these forecasts are still significantly more skillful than the corresponding persistence 
forecasts from weeks 2–7. Taken together, the results shown in Figure 8 suggest that the presence of coastal KW 
activity at initialization generally enhances dynamical forecast skill of CCS SSH anomalies, particularly at longer 
leads (weeks 4–7) and for more intense KWs.

3.5. Real-Time C-KW Index

In order to assist future operational efforts that may want to utilize the C-KW index in real time, we follow pre-
vious studies (Kikuchi et al., 2012; Kiladis et al., 2014; Rydbeck et al., 2019) in obtaining an approximation of 
the C-KW index based on real-time SSH anomalies. These steps are necessary because the actual C-KW index 

Figure 8. Forecast skill as a function of lead time and Kelvin waves (KW) intensity at initialization in (a) the South California Current System (CCS), (b) the Central 
CCS, and (c) the North CCS. Forecast data for each region were computed by averaging together SSH anomalies at the coastal S2S grid cells within each domain (see 
Figure 1 colored boxes for regional boundaries). Forecast skill across all initializations (i.e., “All days”) is in black. Forecast skill for forecasts initialized during No, 
Weak, Strong, and Extreme Kelvin wave conditions are in blue, yellow, orange, and purple, respectively. All dynamical forecast skill scores (solid lines) are significantly 
greater than 0. Filled circles mark lead times where the dynamical forecasts have significant skill above persistence (squares, dashed lines). All significance indicators 
are relative to a 90% confidence interval.
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(Figure 5c) is based on bandpass filtered SSH anomalies, which requires forward temporal filtering and is not 
possible in real time.

Following the Rydbeck et al. (2019), we formulate a real-time C-KW index by first removing the first three har-
monics of the seasonal cycle from the coastal along-path GLORYS SSH anomalies (i.e., from SA to the Gulf of 
Alaska). We then apply a wavenumber filter which retains only positive wavenumbers (i.e., waves propagating 
with the coast located to the right of propagation vector). To remove low-frequency variability at each grid point, 
we then subtract the mean of the previous 55 days from each time step of interest. Our results are insensitive to 
minor changes in the number of days averaged.

The resulting SSH anomalies are then projected on our Coast only EOF1 and EOF2 patterns at each time step, 
producing real-time estimates of the Coast only PC1 and PC2. Finally, we use Equation 1 to formulate the re-
al-time C-KW index. Over the period 1993–2018, the actual C-KW index and the real-time C-KW index are 
highly correlated with a value of 0.87. Figure 9 shows that the two indices are very highly correlated during the 
active 2015–2016 CTW period discussed in Figure 3. The high overall correlation and the close correspondence 
between the different indices during this active KW period suggests that the real-time C-KW index may be useful 
for real-time forecasting applications.

4. Summary and Conclusions
In this study, we conducted the first S2S forecast skill assessment of SSH anomalies in the CCS. We found that 
dynamical forecasts initialized every 3–4 days from 2000-2018 by the ECMWF S2S forecasting model skillfully 
predict observed SSH anomalies throughout the coastal CCS (Figure 6). In particular, the S2S model reforecasts 
have significant skill above persistence in the South CCS at lead times greater than ∼15 days in the summer and 
fall. In the North CCS, dynamical forecast skill was significantly above persistence beginning at shorter leads in 
the winter (∼day 5) and at longer leads in the summer (∼day 20), which was primarily due to the weaker day-to-
day persistence of SSH anomalies at these latitudes. Dynamical forecasts in the Central CCS were also skillful, 
but rarely more so than the persistence forecast.

In addition, we showed that dynamical forecast skill is enhanced when robust coastal KW activity is present 
at forecast initialization (Figure 8). This enhanced skill was particularly apparent in the South CCS and North 
CCS at long leads (e.g., week 4-week 7), where forecasts initialized during Strong or Extreme KW conditions 
explained a remarkable 30–40% more observed SSH variability than the corresponding persistence forecasts 
and 6–10% more SSH variability than the dynamical forecasts initialized without significant KW activity. To 

Figure 9. The actual Coast only KW (C-KW) index (black) compared to the approximated real-time C-KW index (red) for an active coastal Kelvin wave period.
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characterize CTW variability in the forecasts, we built on previous studies (e.g., Rydbeck et al., 2019) to devel-
op a new coastal KW (C-KW) index (Figure 5c) based on EOFs of coastal SSH anomalies in a high-resolution 
ocean reanalysis. The amplitude and phase information contained in our C-KW index describes the propagation 
of intraseasonal CTWs from a variety of dynamical origins, ranging from equatorially trapped KWs continuing 
up the Central and North American coastlines to waves generated by local wind effects. Finally, in support of 
operational forecasting efforts, we showed that our C-KW index can be reliably estimated in real time.

Our results have a number of implications for the broader marine research community and for potential develop-
ments in managing marine resources and coastal infrastructure. First, the ECMWF S2S model consistently pro-
duces dynamically skillful SSH forecasts along the U.S. west coast, and can be considered as a decision support 
tool for applications where coastal SSH is a key variable. As more modeling centers begin offering S2S forecasts 
of ocean variables, it will be important to further assess regional forecast skill across a range of model config-
urations. We call on other S2S modeling participants to consider prioritizing SSH (and other ocean variables) 
as a publicly available output of future forecasts. Second, our work highlights GLORYS as a powerful tool for 
studying the detailed evolution of the coastal ocean in the recent observational record. In particular, the dynami-
cal insights provided by our new C-KW index combined with the high spatial resolution of GLORYS present an 
opportunity to retrospectively study the relationship between observed coastal KW activity and measured impacts 
on CCS marine ecosystems with fresh perspective.

Additionally, the physical evolution of CTWs through the CCS provides an important forecast opportunity for 
enhanced prediction skill of coastal SSH, particularly at lead times of 4–7 weeks. These results may aid in deci-
sions for adapting coastal infrastructure to increased flood risk in the face of continued mean sea level rise (Jacox 
et al., 2020; Widlansky et al., 2017; Woodworth et al., 2019), as well as other applications for which SSH is linked 
to broader ecosystem change (e.g., upwelling, species distributions). To further examine the potential for this type 
of decision support, we intend to follow-up this study by assessing the physical relationship between coastal SSH 
variability and subsequent changes to marine ecosystem-relevant variables such as SST, bottom temperature, 
mixed layer depth, upwelling, and horizontal currents. Such an analysis would provide marine stakeholders with 
improved understanding of how regional sea level changes map on to ecosystem and infrastructure impacts, and 
thus how best to utilize S2S forecasts for decision making.

Finally, while our focus was primarily on coastal KW variability, we echo previous studies (e.g., Stan et al., 2017) 
emphasizing the broader importance of deterministic climate processes as sources of enhanced forecast skill. In 
particular, climate processes that are well understood physically (such as the propagation of a coastal KW) may 
be more accurately simulated by models, and thus contribute to a more reliable forecast when they are captured 
in a forecast initialization. Therefore, it is possible that other rapidly evolving oceanic or atmospheric telecon-
nections related to climate modes (e.g., ENSO) or organized convection (e.g., the MJO) may provide additional 
forecast opportunities for the U.S. coastal ocean on S2S timescales.

Data Availability Statement
The GLORYS reanalysis data used in this study are freely available at: https://resources.marine.copernicus.eu/
products. The ECMWF S2S reforecasts can be found at: https://confluence.ecmwf.int/display/S2S.
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