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1.   Introduction

Predictability of the atmosphere is limited by the cha-
otic interaction of weather. There are many different
ways of defining predictability; for example, we may
consider the doubling time of initial uncertainty. It is of
considerable forecast interest to find those atmospheric
states for which this error doubling time is particularly
long.

Attention has thus been paid to the possible existence
of persistent or quasi-stationary atmospheric flow
regimes, defined as recurrent large-scale atmospheric
flow configurations that persist longer than individual
weather systems (e.g., Pandolfo 1993). It is hoped that
these states may be inherently more predictable and/or
that they may provide initial atmospheric states from
which more reliable forecasts are made. The idea of
weather regimes, in terms of midlatitude cyclone tracks
over Europe, was first proposed by van Bebber (1891).
The more modern phenomenological notion of midlati-
tude atmospheric flow regimes, or Großwetterlagen, was
introduced by Baur et al. (1944) and Baur (1947) for use
in making statistical long-range weather forecasts.
Dynamical theories of multiple equilibria (blocked and

zonal regimes) due to nonlinear wave-mean flow interac-
tions, first proposed by Charney and deVore (1979),
Wiin-Nielsen (1979), and Hart (1979), spurred a
renewed effort to explore the existence of regimes in
observed midlatitude flows (e.g., Sutera 1986; Hansen
and Sutera 1986; Mo and Ghil 1988; Molteni et al. 1990;
Kimoto and Ghil 1993a,b; Cheng and Wallace 1993;
Corti et al. 1999; Smyth et al. 1999; Monahan et al.
2001, and many others). It should be noted that these
observational studies generally did not find regime
behavior as pronounced as in the theoretical and simple
model studies.

The term “regime” can be nonspecific in common
usage. Some stable linear systems can have “regimes” if
what is meant is rapid singular-vector growth followed
by a quasi-stationary state (e.g., Farrell and Ioannou
1996). Such observed atmospheric behavior can be well
simulated by relatively low order multivariate linear
models (Cash and Lee 2001; Winkler et al. 2001). In
fact, to the extent that these models are good forecast
models of weekly averages (Newman et al. 2003), they
suggest an important constraint on the nature of nonlin-
earity in the atmosphere; we will return to this point
later.

A stable linear system driven by Gaussian forcing will
result in Gaussian statistics. Therefore, studies exploring
potential regime behavior resulting from nonlinear
dynamics have focused upon the non-Gaussianity of the
Probability Distribution Function (PDF) representing all
possible atmospheric states. Ideally, one would like to
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ABSTRACT

Atmospheric circulation statistics are not strictly Gaussian. Small bumps and other deviations from Gaussian
probability distributions are often interpreted as implying the existence of distinct and persistent nonlinear circu-
lation regimes, with potentially higher than average levels of predictability. In this paper it is shown that such
deviations from Gaussianity can, however, also result from linear stochastically perturbed dynamics with multi-
plicative (i.e., state-dependent) noise statistics, but are generally associated with much lower levels of predict-
ability. Multiplicative noise is often identified with state-dependent variations of stochastic feedbacks from
unresolved system components, and may be treated as stochastic perturbations of system parameters. It is shown
that including such perturbations in the damping of large-scale linear Rossby waves can lead to deviations from
Gaussianity very similar to those in the joint probability distribution of the first two Principal Components (PCs)
of observed weekly-averaged 750 hPa streamfunction data for the past 52 winters. A closer examination of the
Fokker-Planck probability budget in the plane spanned by these two PCs shows that the observed deviations from
Gaussianity can be modeled with multiplicative noise, and are unlikely the results of slow nonlinear interactions
of the two PCs. It is concluded that the observed non-Gaussian probability distributions do not necessarily imply
the existence of persistent nonlinear circulation regimes, and are entirely consistent with those expected for a lin-
ear system perturbed by multiplicative noise.
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find significant multiple peaks in these multivariate
PDFs. However, due to the limited data record, observa-
tional studies of climate regimes more typically examine
the bivariate PDF describing the two leading Empirical
Orthogonal Functions (EOFs) of an appropriate atmo-
spheric variable (e.g., Mo and Ghil 1988; Molteni et al.
1990; Kimoto and Ghil 1993a,b; Corti et al. 1999;
Smyth et al. 1999; Weisheimer et al. 2001). Moreover,
the PDFs of observed large scale atmospheric circulation
anomalies do not show any statistically significant multi-
modality. Rather, PDF “inhomogeneities” (statistically
significant deviations from bivariate Gaussianity) are
often interpreted as multiple Gaussian regimes (Smyth et
al. 1999).

The most common explanation for extratropical cli-
mate regimes is that they are induced by nonlinearities in
the slow manifold of the equations governing atmo-
spheric dynamics (e.g., Legras and Ghil 1985; Yoden
1985a,b; Ghil and Childress 1987; DeSwart 1988; Itoh
and Kimoto 1996, 1997, 1999; Ghil and Robertson 2002,
and many others). It is this slow process that gives hope
for potential long-range predictability. Of course, slowly
evolving external non-Gaussian forcing, such as that
produced by anomalous tropical convection due to the
Madden-Julian oscillation (MJO) and El Niño-Southern
Oscillation (ENSO), could also produce a non-Gaussian
response in the extratropics even if extratropical dynam-
ics are entirely linear.

Regimes that result from either or both of these mech-
anisms might indeed be more predictable than other
atmospheric states. There is, however, a third possibility:
regimes could result not from slow processes but rather
from the fast (that is, rapidly decorrelating) nonlineari-
ties of the dynamical system. This arises because, given
the very high number of degrees of freedom in the atmo-
sphere and the consequent plethora of nonlinear sub-
systems, it is highly likely that there exists chaos
sufficiently disordered as to make the application of the
Central Limit Theorem (e.g., Khasminskii 1966; Papani-
colaou and Kohler 1974; Majda et al. 1999, 2003) valid
at medium-range timescales (about a week to months).
In this case, the fast nonlinearities may be approximated
as state-dependent, or multiplicative, stochastic noise
that is inherently unpredictable. [For state-independent,
or additive, noise this was first noted in a climate context
by Hasselmann (1976).]

That apparently similar regimes can be induced by
either slow or fast nonlinearities is illustrated in Fig. 1 (a
more quantitative discussion is given in section 3). Con-
sider a double potential well as a simple model of two
“regimes” resulting from nonlinearities of the slow man-
ifold. Systems trajectories kicked from one potential
well to the other by additive noise will result in a bimo-
dal PDF. This is not, however, the only dynamical sys-
tem which can produce such a PDF. Consider instead a
linear system, represented by a monomodal determinis-
tic potential, in which state trajectories are kicked
around by multiplicative noise. If the noise is relatively
strong in the center of the monomodal potential, and rel-

atively weak at the edges, then this system will also have
a bimodal PDF. Thus the same bimodal PDF can result
from either a slow (deterministic) nonlinear dynamical
system or a fast (stochastic) nonlinear dynamical system.
As we will see, however, the predictability of these two
systems is very different.

In this paper we will use both simple models and
observational analysis to develop the hypothesis that
atmospheric non-Gaussian regimes may be due to multi-
plicative noise. First, in section 2, some principal results
of stochastic dynamics are briefly reviewed. Then, in
section 3, we discuss some simple examples that demon-
strate how a given PDF can imply very different limits of
predictability depending upon whether the PDF results
from slow deterministic nonlinear evolution or fast sto-
chastic evolution. In section 4, stochastic perturbations
of the linear damping and the zonal mean flow are
included in a linear model of Rossby wave evolution, to
assess the impact of multiplicative noise in a simple but
meteorologically relevant setting. By explicitly solving
the Fokker-Planck equation and the stochastic differen-
tial equation, we show that multiplicative noise in the
frictional damping leads to intermittency and conse-
quently a highly non-Gaussian distribution. These
results provide one possible explanation for the non-
Gaussian PDF found in the observational analysis pre-
sented in section 5, where it is shown the regime behav-
ior in the leading EOFs of 750 hPa Northern Hemisphere
streamfunction is consistent with that resulting from
multiplicative noise. Finally, section 6 provides a sum-
mary and a discussion.

2. Stochastic Dynamics in a Nutshell

This section introduces a few basic ideas of stochastic
dynamics used in this paper. More comprehensive trea-
tises can be found in many textbooks (e.g., Gardiner
1985; Horsthemke and Léfèver 1984, Paul and Baschna-
gel 1999).

Consider the dynamics of an n-dimensional system
whose state vector x is governed by the stochastic differ-
ential equation (SDE)

(1)

where the vector A(x) represents all slow processes and
B(x)η, with the matrix B(x) and the noise vector η, rep-
resents the stochastic approximation to the fast nonlinear
processes. The stochastic components ηi are assumed to
be independent Gaussian white noise processes:

(2)

where denotes the averaging operator. The corre-
sponding Fokker-Planck equation,

td
dx A x( ) B x( )η+=

ηi t( )〈 〉 0 ηi t( )ηi t′( )〈 〉 δ t t′–( )=,=

…〈 〉
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(3)

describes the conservation of the probability density
p(x,t) of the system described by the SDE (1). Two dif-
ferent values of α yield two physically important sto-
chastic calculi: the Itô (α=0) and the Stratonovich
calculus (α=1/2). On the right hand side, the first term
within square brackets describes the dynamics of the
deterministic system and is called the deterministic drift.
The second term within square brackets, which does not
occur in Itô systems (α=0), is called the noise-induced
drift. The remaining term is associated with the diffusion

of the probability density by noise.
For a detailed discussion of stochastic integration and

the differences between Itô and Stratonovich SDEs see
for example Horsthemke and Léfèver (1984), Gardiner
(1985), or Penland (1996). The key point here is that the
Stratonovich calculus is relevant for continuous physical
systems, such as the atmosphere, in which rapidly fluctu-
ating quantities with small but finite correlation times are
approximated as white noise. Thus, simplified stochastic
models constructed from atmospheric dynamical equa-
tions may assume Stratonovich calculus. However, if
instead a stochastic model is indirectly estimated from
observed discrete data, then the inferred drift will be the
sum of the deterministic and the noise-induced drifts. In
this case using the Itô framework may be preferable,
where now A(x) represents not just the deterministic
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FIG. 1. A schematic sketch to illustrate the fundamental dynamical difference between deterministicaly and stochasticaly induced regimes. The
effective PDF of a trajectory in a deterministic double-well potential driven by additive noise will be bimodal. The same effective PDF can be pro-
duced by a trajectory in a monomodal deterministic potential kicked around by multiplicative noise. Because of the larger noise amplitudes near
the center of the monomodal potential, as compared to the strength of the noise right and left from it, the system's trajectory is more often found on
either side of the central noise maximum. Thus, the PDF becomes bimodal. See appendix A for a mathematical formulation of this behavior.
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drift but rather this sum, or the “effective drift”.
In principle, the deterministic and stochastic parts of

(3) can be determined from data by using their statistical
definitions (Siegert et al. 1998; Friedrich et al. 2000;
Gradisek et al. 2000; Sura and Barsugli 2002; Sura 2003;
Sura and Gille 2003):

(4)

(5)

where is a solution (a single stochastic real-
ization) of the SDE (1) with the initial condition

at time t. The data define a state space repre-
senting every observed value of x. The effective drift and
stochastic diffusion are estimated by replacing the theo-
retical limit with a finite-difference approxima-
tion. In practice, estimating from discretely
sampled data is prone to error, because Taylor expan-
sions of stochastic terms are proportional to and
not proportional to as are the deterministic terms
(e.g., Sura and Barsugli 2002; Sura 2003).

When A and B are known, analytical solutions of the
Fokker-Planck equation (3) for p(x,t) can only be found
in limited cases (appendix B presents one such case). For
more general cases, numerical methods must be used. In
this paper (section 4) the semi-implicit Chang-Cooper
method is implemented to solve (3) for p(x,t) (Chang
and Cooper 1970; Park and Petrosian 1996). It employs
a flux-conservative second-order accurate finite differ-
ence scheme, extended to multidimensional problems
using the operator splitting method (Press et al. 1992;
Park and Petrosian 1996). In section 4 a regular grid with
a mesh size 0.1 and 200x200 grid points is used. The
domain of computation is [-10:10,-10:10]. The Fokker-
Planck equation is integrated until a steady state is
reached. The initial distribution of the probability den-
sity function p is chosen to be a two dimensional Gauss-
ian, with standard deviation , centered at the origin
of the system (the results are not sensitive to this choice).
The value of p integrated over the domain of computa-
tion is conserved and normalized to 1.

To interpret the results of the Fokker-Planck equation
presented in section 4, numerical integrations of the SDE
are also performed, using the Milstein scheme (Kloeden
and Platen 1992) with a time step of 0.1 day. Note that
one has to be very careful in choosing a scheme for the
accurate numerical integration of a SDE with multiplica-
tive noise (Ewald et al 2004). Even though the Milstein
scheme is known to be an accurate scheme, we com-
pared the solutions of the Fokker-Planck equation with
the PDFs obtained from numerical integrations of the
SDE, and they agreed very well. Although a single

experiment is only one realization of a stochastic pro-
cess, the ergodic nature of the system ensures agreement
with the steady state solution of the corresponding Fok-
ker-Planck equation for the PDF of an infinite number of
stochastic realizations.

3. Two Paradigms for Atmospheric Regimes

Obviously, a given non-Gaussian PDF can represent
many different dynamical systems. However, it is illus-
trative to consider two extreme models: a deterministic
model, in which regimes are entirely due to a nonlinear
deterministic A (perturbed only by state-independent
noise), and a stochastic model, in which regimes are
entirely due to a multiplicative noise term B (with only a
linear A). The mathematical formulation of the two
models is presented in appendix A.

First, we quantify the simple example presented in
Fig. 1 by applying these models to the bimodal PDF p(x)
= [exp(-(x+1.5)2/2) + exp(-(x-1.5)2/2)] (see
Fig. 2a). Because observed PDFs rarely show any clear
multimodality, we also consider the “skewed” PDF
given in Fig. 3a, whose departure from Gaussianity is
relatively small but is consistent with that observed for
weekly averaged circulation anomalies (see section 5). It
has a heavier tail than a Gaussian for values x < -2
(regime 1), is smaller than a Gaussian for -2 < x < -0.3,
and is again heavier than a Gaussian for -0.3 < x < 0.5
(regime 2). For larger x the PDF is strictly Gaussian.

Given the PDF and , we can solve for A(x) [Eq.
(A.3); see appendix A]; results for the bimodal PDF are
in Fig. 2b and for the skewed PDF in Fig. 3b. In this case
the non-Gaussianity is due to the nonlinearity of the
deterministic term A(x). Alternatively, given the PDF
and A(x) = -x, we can solve for B(x) [Eq. (A.4)]; results
for the bimodal PDF are in Fig. 2c and for the skewed
PDF in Fig. 3c. Now the non-Gaussianity is due to the
structure of the multiplicative noise term B(x). Note (see
Fig. 3c) that B(x) for the skewed PDF is approximately
piecewise linear, and that as opposed to the stochastic
model for the bimodal PDF, the noise amplitude
increases for decreasing negative x.

Although the stationary PDFs of the deterministic and
stochastic regimes are identical, the conditional PDFs
and related mean residence times are not. Here, we
define residence time as the time it takes a stochastic tra-
jectory initially at x inside the interval [x1,x2] to first
leave that interval (see appendix A for more details). For
example, the mean residence time in the right peak of the
bimodal PDF (interval [1,2]), shown in Fig. 4a, is con-
siderably longer for the deterministic model than for the
stochastic model. A similar difference between the two
models exists in the interval [-3.5,-2.5] for the weakly
skewed PDF (Fig. 5a), but is much less for the interval [-
0.25,0.75] (Fig. 5b).

Not surprisingly, the predictability in these two sys-
tems is also very different. Here, we define predictability
by the expected skill of a perfect model infinite member

A x( ) 1
∆t
----- X t ∆t+( ) x–〈 〉
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forecast ensemble, measured as an anomaly correlation:

(6)

where is the signal-to-noise ratio and τ is the fore-
cast lead (Sardeshmukh et al 2000; Newman et al 2003).
For the bimodal PDF, for the initial condition
xo=1.5 for the deterministic and the stochastic models is
shown in Fig. 4b; as a function of initial con-

dition is shown in Fig. 4c. As implied by the mean resi-
dence times, predictability is much less when the
bimodality is due to unpredictable multiplicative noise
than when it is due to deterministic nonlinear dynamics.
For the skewed PDF, for the initial conditions
xo=-3, and xo=0.25 are shown in Figs. 5c,d;
as a function of initial condition is shown in Fig. 5e.
Interestingly, predictability for the deterministic model
is generally higher for negative x, whereas it is generally
higher for positive x in the stochastic model. Thus, a
characterization of predictability for a system repre-
sented by a given PDF depends on the dynamics of the

FIG 2. a) Graph of the bimodal PDF p(x) = [exp(-
(x+1.5)2/2) + exp(-(x-1.5)2/2)]. b) Solution of A(x) from (A.3), given
the bimodal PDF and additive noise . c) Solution of B(x)
from (A.4), given the bimodal PDF and a linear deterministic term
A(x) =  -x.

1 8π⁄( )

B2 1≡

a)

b)

c)

ρ∞ τ( ) S τ( )

S τ( )2 1+
--------------------------=

S τ( )

ρ∞ τ( )

ρ∞ τ 2=( )

FIG 3. a) Graph of the “skewed” PDF (solid line); the correspond-
ing Gaussian PDF is indicated by the dashed line. b) Solution of A(x)
from (A.3), given the bimodal PDF and additive noise . c)
Solution of B(x) from (A.4), given the bimodal PDF and a linear
deterministic term A(x) =  -x.

B2 1≡
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underlying system, and cannot be ascertained merely
from the existence of non-Gaussianity.

4. Stochastically Perturbed Rossby Waves

In stochastic atmospheric models noise is introduced
primarily as an additive process (e.g., Egger 1981;
DeSwart 1988; Farrell 1995; Farrell and Ioannou 1996;
Newman et al. 1997). However, stochastic forcing may,
for example, also represent the fluctuations of model

parameters due to unresolved system components (e.g.,
Neelin and Weng 1999; Sardeshmukh et al. 2001; Sura
2002; Lin and Neelin 2002). In that case, the stochastic
process appears as multiplicative noise, which as is well
known can substantially change the dynamical behavior
of not only nonlinear systems (Horsthemke and Léfèver
1984; Landa and McClintock 2000; Sura 2002), but also
linear systems. Sardeshmukh et al (2001) introduced
multiplicative noise to the linearized barotropic vorticity
equation, and found that the mean stationary wave
response to steady forcing was amplified when the
damping parameter fluctuated, but was weakened (in a
scale-dependent manner) when the advection parameter
fluctuated. Here, we show in the same framework that
stochastic damping also results in Rossby waves with a
highly non-Gaussian distribution.

4.1 Multiplicative noise in the linearized barotropic vor-
ticity equation

The linearized barotropic vorticity equation is:

(7)

where ζ is absolute vorticity, v is the non-divergent hor-
izontal velocity, r is the frictional damping rate, and F' is
anomalous forcing. Note that F' includes both predict-
able forcing (e.g., steady tropical forcing) and unpredict-
able forcing, modeled using additive noise (Newman et
al 1997). Overbars indicate time means, and primes
denote deviations from the time means.

Equation (7) can be written in terms of the stream-
function Ψ( ) and in operator form as

(8)

where L is the linear barotropic operator (e.g., Borges
and Sardeshmukh 1995) and (dropping the primes) Ψ
and F are the anomalous streamfunction and forcing vec-
tors, respectively. Any streamfunction anomaly can then
be expanded in the basis set of complex eigenvectors Ej
as , where LEj=λjEj, λj are the complex
eigenvalues, and Ψj are the complex expansion coeffi-
cients. The equations for any mode are decoupled from
those of all other modes so that for each mode j we can
write

(9)

where now the vector Ψj represents (Ψjr,Ψji)
T,

FIG 4. Statistics of the bimodal case (see Fig. 2): a) The mean res-
idence time for the deterministic (solid line) and the stochastic
regime (dashed line) in the interval [1, 2]. b) as a function of
lead time for the deterministic (solid line) and the stochastic regime
(dashed line) for the initial condition x0 = 1.5. c) as a function of
initial condition for the deterministic (solid line) and the stochastic
regime (dashed line) for the lead time τ  = 2.

ρ∞

ρ∞
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t∂
∂ ζ′ ∇ vζ′ v′ζ+( ) rζ′– F′+⋅–=

ζ′ ∇2Ψ′=

td
dΨ LΨ F+=

Ψ ΣΨ jE j=

td
dΨ j L jΨ j f j+=
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(10)

and fj represents the projection of Fj upon the jth mode.
For simplicity we now omit the index j.

Because this model does not exhibit variability beyond
the decay of damped waves to a steady state, it is
assumed that the model can be made more realistic by
introducing stochastic perturbations. On the one hand
the modes retained in the model can be perturbed by

additive noise. On the other hand, introducing stochastic
perturbations in either λr or λi results in multiplicative
noise, and from (9) the Stratonovich-SDE is

(11)

where the forcing is separated into a deterministic com-
ponent f and an additive stochastic component . If the
decay rate of the wave (λr) is perturbed stochastically,
then

FIG. 5. Statistics of the non-Gaussian case (see Fig. 3): The mean residence times for the deterministic (solid lines) and the stochastic regimes
(dashed lines) in the intervals a) [ 3.5, 2.5], and b) [ 0.25, 0.75]. as a function of lead time for the deterministic (solid line) and the stochastic
regime (dashed line) for the initial conditions c)x0 = 3, and d)x0 = 0.25. e) as a function of initial condition for the deterministic (solid line)
and the stochastic regime (dashed line) for the lead timeτ = 2.

ρ∞
ρ∞

a)

c)

e)

b)

d)

L j
λ jr λ– j i

λ j i λ jr

=

td
dΨ LΨ f BηM ηA+ + +=

ηA
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(12)

If, instead, the phase speed (λi) is perturbed stochasti-
cally, then

(13)

In either case, the multiplicative and additive stochastic
noise vectors are , and .
In the subsequent discussion , , , and are
assumed to be independent Gaussian white noise pro-
cesses with corresponding amplitudes , , , and

:

,

,

,

, (14)

where denotes the averaging operator. The PDF of
this stochastic model is governed by the corresponding
Fokker-Planck equation (3) with α=1/2.

4.2 Stochastically perturbed Rossby waves on a superro-
tating basic state

The simplest form of Eq. (7) sets the time mean flow
to be in solid body rotation with the earth, where the
mean meridional flow is zero and the mean zonal flow is
u=uocos(θ). Then the eigenmodes Ej are just complex
spherical harmonics (θ: latitude, φ: longitude)
for the wavenumber index pair (m,n) (m: zonal wave-
number, n: meridional wavenumber). The Rossby wave
dispersion relation gives λr=-r and λi=mDn, where

(15)

Typical parameters of atmospheric motion are used: r=
(4 d)-1, uo = 15 ms-1, ∆ = uo/aΩ=.0323, Ω=2π d-1, and
mDn is set to 1 d-1, corresponding to m=O(5) and
n=O(5). Steady anomalous forcing is f=(1,1)T.

Past studies examining the Rossby wave response to
steady forcing (e.g., Hoskins et al. 1977; Sardeshmukh

and Hoskins 1988) have typically considered r and uo to
be fixed. However, a more realistic representation of
Rossby wave propagation on the sphere might also con-
sider stochastic perturbations in r and uo (Sardeshmukh
et al. 2001). In the following, we solve the Fokker-
Planck equation (3) for p using these parameters and sto-
chastically perturbing either r or uo for different values
of the noise amplitude . Weak additive noise with
amplitudes = =0.2 is also included. Note that due
to the structure of the matrices (12) and (13) the imagi-
nary part of the multiplicative noise (with amplitude

) has no impact and is, therefore, not specified. In
both experiments the strength of the multiplicative noise

is scaled by its effect on the variance of the system.
The multiplicative noise amplitude is increased until the
variances and reach approximately 1. This
yields the interval =0.0,0.1,...0.4 for the stochastic
damping, and the interval =0.0,0.2,...0.8 for the sto-
chastic basic state.

Stochastic damping

The marginal PDFs for varying noise amplitude in the
damping are shown in Figs. 6a,b. Table 1 shows the val-
ues of the skewness and the excess kurtosis (the excess
kurtosis measures the departure from Gaussianity:
excess kurtosis=kurtosis-3). If the multiplicative noise is
nonexistent or weak ( =0.0,0.1,0.2) the marginal dis-
tributions p(Ψr) and p(Ψi) are approximately Gaussian.
However, for stronger noise amplitudes ( =0.3,0.4)
the distributions become skewed with heavy, highly non-
Gaussian tails. A sample time series of Ψi of the stochas-
tic Rossby wave model with relatively strong stochastic
frictional damping ( =0.4) is shown in Fig. 7a. The
distinct feature of the time series is its intermittent
behavior. It is this intermittency that gives rise to the
heavy, non-Gaussian tails of the PDFs, meaning that
extreme events are far more probable than can be
expected from a Gaussian distribution. The positive
excess kurtosis is a measure of this intermittency.

Stochastic basic state

Unlike the stochastic damping case, increasing noise
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2

n n 1+( )
-------------------- 1–=

σr
M

σr
A σi

A

ηi
M

σi
M

σr
M

Ψr
2〈 〉 Ψi

2〈 〉
σr

M

σr
M

TABLE 1. Skewness and excess kurtosis of the marginal
distributionsΨr and Ψi of the stochastic Rossby wave model with
stochastic frictional damping. The excess kurtosis measures the
departure from Gaussianity:excess kurtosis= kurtosis - 3.Note the
strong departures (intermittency) from Gaussianity.

Multiplicative

noise
Skewness Excess kurtosis

Ψr Ψi Ψr Ψi

0.0 0.0 0.0 0.0 0.0

0.1 -0.1 0.0 0.2 0.2

0.2 -0.3 -0.1 1.4 1.3

0.3 -0.7 -0.3 6.6 7.5

0.4 -2.7 -1.4 99.7 83.7

σr
M

σr
M

σr
M

σr
M
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in the superrotation does not produce heavy-tailed distri-
butions, as is evident in both the marginal PDFs (Figs.
6c,d) and the skewness and excess kurtosis in Table 2. A
sample time series of Ψi with a relatively strong stochas-
tic basic state ( =0.8) (Fig. 7b) does not show the
intermittent behavior seen in Fig. 7a. Because the sto-
chasticity in the basic state only influences the phase of
the Rossby wave, the PDF of the system remains more
nearly Gaussian, while multiplicative noise in the fric-
tional damping alters the energy of the wave and causes
the PDF to be highly non-Gaussian (see appendix B and
Fig. 12 for more details).

4.3 Departures from bivariate Gaussianity

As can be expected from the marginal PDFs, stochas-
tic damping produces notable departures from bivariate
Gaussianity. This is true not only for parameters repre-
senting Rossby waves on a superrotating flow, but also
for parameters representing the more general problem of

FIG 6. a-b) Steady state marginal PDF of the Rossby wave model with stochastic frictional damping for = 0.0 (solid line), 0.1 (long dashed
line), 0.2 (short dashed line), 0.3 (dotted line), and 0.4 (dotted-dashed line): a)p(Ψr); X denotesΨr, b) p(Ψi); Y denotesΨi. c-d) Steady state mar-
ginal PDF of the Rossby wave model with stochastic basic state for = 0.0 (solid line), 0.2 (long dashed line), 0.4 (short dashed line), 0.6 (dot-
ted line), and 0.8 (dotted-dashed line): c)p(Ψr); X denotesΨr, d)p(Ψi); Y denotesΨi.

σr
M

σr
M

a)

c)

b)

d)

σr
M

TABLE 2. Skewness and excess kurtosis of the marginal
distributionsΨr and Ψi of the stochastic Rossby wave model with a
stochastic base state. The excess kurtosis measures the departure from
Gaussianity:excess kurtosis= kurtosis - 3.Note that the distributions
are nearly Gaussian, even for strong multiplicative noise.

Multiplicative

noise
Skewness Excess kurtosis

Ψr Ψi Ψr Ψi

0.0 0.0 0.0 0.0 0.0

0.1 0.0 0.0 0.0 0.2

0.2 0.0 -0.1 0.1 0.0

0.3 -0.1 -0.2 0.3 0.2

0.4 -0.2 -0.4 0.9 0.9

σr
M

FIG. 7. Sample time series ofΨi of the stochastic Rossby wave
model with a) stochastic frictional damping ( = 0.4) and b) sto-
chastic basic state ( = 0.8). Y denotesΨi. Note the different scales
on the ordinates.

σr
M

σr
M

a)

b)
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large scale barotropic Rossby waves evolving on a zon-
ally and meridionally varying base state. As an example,
we set λr = 0.07 and λi = 0.19 in (10), corresponding to
a period of about 33 days and an e-folding time of 14
days, typical of the least damped eigenmode of the 250
hPa climatological December--February flow (Borges
and Sardeshmukh 1995). We set =0.05, and for sim-
plicity set the additive noise to zero; including additive
noise tends to decrease skewness, which can be offset by
increasing F, but has much less effect upon the heavy
tails. For display purposes, we remove the mean drift,
rotate the PDF so that the abscissa points in the direction
of maximum covariance, normalize by the variance
along both axes, and show the difference between the
PDF and the corresponding bivariate Gaussian distribu-
tion.

The resulting departure from Gaussianity (Fig. 8)
appears as two slightly arcing ridge/trough (positive/neg-
ative departures) pairs aligned roughly along a line. This
pattern is qualitatively similar for a wide parameter
range. Decreasing either λr or λi strengthens the depar-
tures from Gaussianity, suggesting that the lower fre-
quency and least damped barotropic eigenmodes could
have the greatest non-Gaussian behavior. Changing these
parameters also can change the covariance between the
real and imaginary parts of Ψ and thus the rotation
applied in Fig. 8.

5. Observed Atmospheric PDFs

Having demonstrated that non-Gaussian behavior can
result from simple linear multiplicative noise, we next
compare the observed non-Gaussianity to the multiplica-
tive stochastic paradigm. Following previous studies
(e.g., Mo and Ghil 1988; Molteni et al. 1990; Kimoto

and Ghil 1993a,b; Corti et al. 1999; Smyth et al. 1999;
Weisheimer et al. 2001), we consider non-Gaussian
regimes in a highly truncated bivariate phase space
spanned by two leading EOFs.

5.1 Bivariate PDF

The analysis is applied to Northern Hemisphere 750
hPa streamfunction data for the extended winters
(November--March) of 1949/50--2001/02, spectrally
truncated to T21 resolution. The data were obtained
from the National Centers for Environmental Prediction
(NCEP) Reanalysis dataset (Kalnay et al. 1996). Stream-
function anomalies were defined by removing the sea-
sonal cycle (that is, the annual mean plus the first three

σr
M

FIG 8. Steady state PDF anomalies of the Rossby wave model (λr=
0.07 andλi = 0.19) with a stochastic frictional damping ( = 0.05).
The axes are rotated so that and

. The contour interval is 0.002.

σr
M

X 0.86Ψr– 0.51Ψi–≡
Y 0.51Ψr 0.86Ψi–≡

FIG. 9. a) PDF of PC1 and PC2 (thin solid lines). Regions of signif-
icant positive deviations from a bivariate Gaussian PDF are indicated
by thick solid lines, significant regions of negative deviations are indi-
cated by thick dashed lines. The deviations from a bivariate Gaussian
PDF are significant at the 90% confidence level. b) The actual PDF
anomalies of PC1 and PC2. The zero contour is omitted for clarity, the
contour interval is 0.002.

a)

b)
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annual harmonics) from each variable at each gridpoint
and then applying a 7-day running mean filter. Calcula-
tions using 500 hPa geopotential height pentad data
yielded similar results (not shown).

A Principal Component Analysis (PCA) was applied
to the streamfunction anomalies. The first two EOF pat-
terns form the orthogonal basis vectors of a reduced
phase space. The first EOF (EOF1 with principal compo-
nent PC1) explains 16.6% of the total variance, whereas
the second EOF (EOF2 with principal component PC2)
explains 8.2%. The EOFs (not shown) resemble those
found in earlier studies (e.g., Kimoto and Ghil 1993a;
Smyth et al. 1999); signs are defined as in Kimoto and
Ghil (1993a). The PCs are normalized to have zero mean
and unit standard deviation. Monahan et al. (2003) sug-
gested that the leading atmospheric regimes have a large
projection on PCs 1 and 2 and a small, but non-negligi-
ble, projection on PC3. Including this projection on PC3
did not affect any of the results shown below.

The bivariate PDF of PC1 and PC2, determined by
dividing the interval [-4:4,-4:4] into 20x20 equal bins
and then applying a 3x3 bin smoothing, is shown in Fig.
9a. Although the PDF is generated with a fairly simple
technique, virtually identical results are obtained using
bivariate Gaussian kernel density estimation with band-
width h=0.2 (not shown). Positive (negative) departures
from Gaussianity (Fig. 9b) indicate that the observed
PDF is greater (smaller) than the corresponding bivariate
Gaussian distribution.

Past studies of bivariate PDFs such as shown here tend
to focus on the local maxima, determined for example
using some bump-hunting algorithm, identifying them as
regimes and producing corresponding composite anom-
aly maps. Such maxima can, however, be sensitive to the
dataset used, to sampling considerations (particularly the
data period), and to the smoothing applied to the PDF.
Considerably more robust is the large scale pattern of the
departures from bivariate Gaussianity, consisting of two
slightly arcing ridge/trough pairs aligned roughly along
a line from the upper left quadrant to the lower right
quadrant. Note in particular the pronounced negative
region; although this feature has amplitude as large as
the positive departures, it has generally received far less
attention. This pattern exists in many different subsam-
ples of the data: using only the odd years, only the even
years, only the years 1949--1975, or only the years
1976--2001. Also, broad regions of positive and negative
departures are statistically significant at the 90% confi-
dence level (heavy contours in Fig. 9a) determined using
the Monte-Carlo method employed in Kimoto and Ghil
(1993a).

5.2 Balancing the probability budget

Using the Fokker-Planck equation (3), a steady clima-
tological probability budget for a bivariate system
(i=1,2; j=1,2), assumed to be Markovian, is

(16)

That is, in a time-averaged sense, the effective drift bal-
ances the stochastic diffusion. We can then use Eq. (16)
to ask whether the nonlinear effective drift due to inter-
action between PC1 and PC2, estimated by using its
finite difference approximation (4), is sufficient to pro-
duce the non-Gaussianity of the observed PDF. That is,
we ask whether or not the probability budget can be bal-
anced using purely additive stochastic forcing.

The effective drift (and the related standard errors) of
the data components are shown in Fig. 10. The uncer-
tainties are relatively small: the standard error is about
0.01--0.02 for most of the points. Unfortunately, the
errors in a direct estimation of the diffusion term are
much larger (Sura and Barsugli 2002), and so we use a
different tack seeing whether additive noise can balance
the probability budget. First, we rewrite Eq. (16) for the
special case where B is purely additive (i=1,2; j=1,2):

(17)
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FIG. 10. The effective drift (and its standard error) estimated from
data. a)A1(x, y) denotes the x-component (PC1), and b)A2(x, y)
denotes the ycomponent (PC2) of the two-dimensional system. The
contour and shading interval is 0.02. c) and d) are the related standard
errors with a contour and shading interval 0.005.
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From Eq. (17), it is clear that zeroes in the diffusion's
contribution to the budget are due solely to the inflexion
points of the PDF p(x,t). Therefore, given the empiri-
cally-determined PDF, a map of this term with any arbi-
trarily chosen additive noise will have the same zero
lines as the map corresponding to any additive noise,
although the maps themselves might change greatly. Of
course, if the probability budget balances, the zero lines
of the diffusion's contribution would be the zero lines of
the drift's contribution as well.

Although any additive noise will do, it is most satisfy-
ing to use a noise matrix with some approximation to
truth using a linear approximation to A(x). We empha-
size that the only time this approximation is used is in
estimating a reasonable test matrix for the noise proper-
ties. Still, the approximation is not bad, and a linear fit to
A(x), x, corresponds very well to the parameters
obtained from a linear inverse modeling procedure (e.g.,
Penland 1989; Penland and Sardeshmukh 1995; Winkler
et al. 2001). The linear drift matrix  is

(18)

The corresponding additive noise matrix BABA
T is then

determined from the Fluctuation-Dissipation relation
(e.g., Penland and Matrosova 1994; Penland and
Sardeshmukh 1995):

. (19)

Using the PDF (Fig. 9), the nonlinear effective drift
A(x) (Fig. 10), and pure additive noise given by the
matrix (19), the two terms on the left hand side of the
Fokker-Planck equation (17) are evaluated and shown in
Figs. 11a and 11b. The only important aspect of Fig. 11b
is the dark dashed line indicating the zero contour. The
sum (the residual R) (significant at the 90% confidence
level, see below) of both terms is shown in Fig. 11c.
Note that the zero contour in Fig. 11b, reproduced in Fig.
11c, crosses significantly large values of the residual,
indicating that multiplicative noise is necessary to bal-
ance the budget.

If we partition the net noise effect BB
T in (17) into an

additive noise term BABA
T and a multiplicative noise

term BMBM
T, then -R would represent the multiplicative

part:

(20)

with R and BABA
T appropriately scaled so that the appro-

priate Fluctuation-Dissipation relation is satisfied.
In summarizing, if the departures from Gaussianity are

FIG. 11. a) The effective deterministic term (C.I.= 0.001), b) the
stochastic term (C.I. = 0.001, the dark dashed line indicates the zero
contour; see text for details), and c) the sum of the e ective determinis-
tic and the stochastic term of the steady Fokker-Planck equation (17)
evaluated by using the PDF (Fig. 9), the deterministic drift (Fig. 10),
and pure additive noise given by the matrix (19); C.I. = 0.0005, the
dark dashed line indicates the zero contour of the stochastic term; see
text for details. The negative value of that sum (-R) can be interpreted
as the multiplicative noise contribution of the Fokker- Planck equa-
tion 17); positive (negative) values mean that the additive noise is too
weak (strong) to balance the deterministic term. The shown regions
are significant at the 90% confidence level. The x-component repre-
sents PC1, the y-component represents PC2.
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primarily due to the nonlinear drift term, then the proba-
bility budget for the joint PC1/2 PDF would be balanced
with pure additive noise. Clearly, it is not; all three terms
of the Fokker-Planck equation have the same order of
magnitude. Positive (negative) values mean that the
additive noise is too weak (strong) to balance the drift.
Thus, the observed departures from Gaussianity do not
result from the nonlinear drift term defined in the two-
dimensional space, but rather from the multiplicative
structure of the noise.

Despite the relative shortness of the data record, this
result appears robust. For example, it is virtually
unchanged if only the data subsamples listed above are
used. Moreover, the residual is statistically significant,
determined as before using a Monte-Carlo method. One
hundred time series having the same covariances and
lag-one autocorrelations as the original time series were
generated, and the deterministic and additive stochastic
terms (and their sum) in the Fokker-Planck equation
were computed for each of them. The number of those
random terms larger/smaller than the original terms
were used to obtain confidence intervals at each point in
the bivariate phase space.

6. Summary and Conclusions

In this paper we outlined a stochastic perspective on
atmospheric regime behavior based on a treatment of
climate variability as a stochastic system with state
dependent noise. We have demonstrated how some sim-
ple linear (or nearly linear) systems with multiplicative
noise can produce non-Gaussian regime-like behavior
without multiple equilibrium solutions of the governing
equations. The presence of non-Gaussianity, therefore,
does not by itself imply that a system has deterministic
nonlinear multiple regimes, nor that these regimes have
a noticeable enhancement of persistence or predictabil-
ity due to this nonlinearity.

The linear Rossby wave response to steady forcing is
non-Gaussian when the damping contains a stochastic
component, as might be expected, for example, from
including gustiness in a linear parameterization of
boundary layer dissipation. This multiplicative noise
leads to a non-Gaussian distribution due to an intermit-
tent behavior of the Rossby waves. Many nonlinear sys-
tems are intermittent in time, space, or both (e.g.,
Sreenivasan 1999; Sreenivasan and Antonia 1997).
Again, the most common explanation for intermittency
is that they are induced by nonlinearities in the slow
manifold of the governing equations.

The similarity between Figs. 8 and 9b, and the analy-
sis of the probability budget of the bivariate PC1/2 PDF,
suggests that atmospheric variability may be represented
by a phase space which can be characterized not so
much by localized regimes as by less-localized depar-
tures from Gaussianity that are largely a result of an
effectively almost linear system perturbed by multipli-
cative noise. This is also consistent with results from

linear inverse modeling (LIM; Winkler et al 2001; New-
man et al 2003), in which observed weekly variability of
250 hPa and 750 hPa streamfunction is successfully
modeled and predicted, even in geographic regions
where non-Gaussianity is relatively large, with a multi-
variate linear system (with O(30) degrees of freedom)
plus noise. In fact, LIM cannot distinguish between a
linear system driven by additive noise (which also need
not be Gaussian), versus one that also includes linear
multiplicative noise. In the former case, LIM returns the
deterministic linear operator L, and the “best” forecasts
of x at forecast lead τ are x(t+τ) = G(τ)x(t) =
exp(Lτ)x(t). In the latter case LIM returns the effective
linear operator (that is, the noise-
induced drift is part of the linear operator returned by
LIM), and the “best” forecasts are x(t+τ) = G(τ)x(t) =
exp( τ)x(t). Trying to differentiate between these two
models is a major focus of our future research. In light
of our current results, success of the LIM suggests that
observed non-Gaussianity is due to the structure of the
noise, that is, to the fast component of the nonlinear sys-
tem. In this view, the most predictable states of the
atmosphere, which correspond to the growing singular
vectors of G, will be affected by how this fast nonlinear-
ity affects G through B.

However, while our observational results are sugges-
tive, they do not constitute a proof. We do not yet have a
solution for what B(x) should be for the real atmo-
sphere, either by determining it from the extremely lim-
ited dataset, from extended model datasets, or from a
simplification of the equations of motion. Furthermore,
because of the highly truncated space used, while the
probability budget is consistent with multiplicative
noise forcing as the cause of the observed non-Gaussian
bivariate PC1/2 PDF, it may also be consistent with slow
nonlinear interactions of PC1 and/or PC2 with higher-
order EOFs. In fact, what may be most clear from these
results is that trying to understand -- or even define --
observed atmospheric regime behavior in a highly trun-
cated phase space, as has generally been the approach of
virtually all past studies, has the potential to be highly
misleading.

Finally, we note that these two paradigms of non-
Gaussian atmospheric behavior do not have to be mutu-
ally exclusive. In reality, there may not be such a clean
separation between the two since there may not be such
a clean separation of timescales in the atmosphere. Nev-
ertheless, a comprehensive approach towards a better
understanding of atmospheric regime behavior must
consider state-dependent noise. Further research is
required to assess the more detailed extent to which
multiple non-Gaussian regimes may be due to the nature
of unpredictable stochastic forcing, rather than to the
slow, predictable deterministic nonlinear dynamics of
the atmosphere.
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APPENDIX A

Fitting a PDF to deterministic and stochastic models

In this appendix we show how various combinations
of different deterministic and stochastic terms in the
governing SDE can give rise to a given PDF. We con-
sider a univariate Itô SDE of the form

(A.1)

where A(x) and B(x) are sufficiently smooth and bounded
functions, and W denotes a Wiener process. The PDF
p(x, t) of the Itô SDE (A.1) is governed by the corre-
sponding Itô-Fokker-Planck equation (e.g., Gardiner
1985; Horsthemke and Léfèver 1984; Paul and Baschna-
gel 1999):

(A.2)

Given a stationary non-Gaussian PDF p(x) (with
= = 0) and pure additive noise

, the stationary Fokker-Planck equation can
be solved for A(x):

(A.3)

with the arbitrary constant β. Given the same PDF p(x)
and the deterministic damping term A(x), the stationary
Fokker-Planck equation can be solved for B(x):

(A.4)

with an arbitrary constant β. That means that the same
PDF can either be produced by nonlinear deterministic
dynamics with additive noise, or, if , by linear
deterministic dynamics with multiplicative noise.
Because we expect A(x) and B(x) to be bounded in phys-
ically reasonable situations, the constant is set to zero:
β=0.

Even if deterministic and stochastic regimes do have
the same stationary PDFs, the dynamical properties
(and, therefore, the predictabilities) of the trajectories are
fundamentally different. This behavior can be illustrated
by the mean residence times. The residence time of a
stochastic trajectory initially at x inside the interval
[x1,x2] is the time until the trajectory first hits the bound-
ary of the interval. The mean residence time τ(x) of a
stochastic trajectory governed by the SDE (A.1) is given
by (e.g., Gardiner 1985; Horsthemke and Léfèver 1984;
Paul and Baschnagel 1999)

(A.5)

with the boundary conditions τ(x1) = τ(x2) = 0.

APPENDIX B

An analytical solution of a Fokker-Planck equation
with multiplicative noise

In this appendix an analytical solution of the Itô and
Stratonovich Fokker Planck equation for a stochastic
basic state and no steady Rossby wave forcing [S = (0,
0)T] is presented. This solution is then used to discuss
the fundamental physical difference between a stochastic
frictional damping and a stochastic basic state. The SDE
for the time evolution of the vector Ψ = (Ψr,Ψi)

T is

(B.1)

with the matrices

(B.2)

and

(B.3)

and the multiplicative and additive stochastic noise vec-
tors are , and . The sto-
chastic components , , , and are assumed
to be independent Gaussian white noise processes with
corresponding amplitudes , , , and [Eq.
14]. Note that due to the structure of the matrix (B.3) the
imaginary part of the multiplicative noise (with
amplitude ) has no impact and is, therefore, not spec-
ified. For identical additive noise amplitudes

= = the corresponding Fokker-Planck equation
for the PDFp(Ψ,t) reads (i = 1, 2; j = 1, 2):
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with α=0 for Itô systems and α=1/2 for Stratonovich
systems. Because of the identical additive noise ampli-
tudes the Fokker-Planck equation has an exact stationary
Gaussian solution even in the presence of multiplicative
noise with amplitude :

(B.5)

with the normalization constant Φ, and

. (B.6)

Note that the noise-induced drift in the Stratonovich sys-
tem (α=1/2) effectively increases the damping of the
mean flow. Yet, the noise-induced drift is compensated
by the remaining effect of the multiplicative noise. Thus,
in the Stratonovich calculus there is no effect of the mul-
tiplicative noise on the stationary PDF at all. This behav-
ior can be understood by simple geometric
considerations described below. These considerations
also clarify the fundamental physical difference between
a stochastic frictional damping and a stochastic basic
state. A schematic explanation is shown in Fig. 12. The
equation of a circle (the undamped motion of the Rossby
wave with or without the presence of additive noise with

identical amplitudes = = ) with radiusa around
the origin of the coordinate system in the (Ψr,Ψi)-plane
is

(B.7)

A vector perpendicular to the circle (B.7) is
. A vector tangential to the

circle (B.7) is , where ez is
the unit vector perpendicular to the (Ψr,Ψi)-plane. It is
clear from Eqs. 12 and 13, and the multiplicative noise
vector, that the kicks of the stochastic damping are per-
pendicular to the undamped circular phase space motion,
whereas the stochastic kicks in the basic state are tan-
gential to it. Therefore, the stochasticity in the zonal
basic state u0 only influences the phase of the Rossby
wave, but not its energy.

When stochastic perturbations occur in the frictional
damping r0, the energy is altered, but not the phase of the
Rossby wave. In Fig. 12 the thick solid circle indicates
the energy conserving wave motion of the undamped
system with or without the presence of additive noise
with identical amplitudes. The thick dashed line shows
the phase space motion of the corresponding damped
system. The thin dashed circles are isolines of the
strength [defined as ]of the multipli-
cative stochastic forcing. The arrows show the directions
of the stochastic kicks in a) the zonal basic state and b)
the frictional damping.

Because the stochasticity in the basic state only influ-
ences the phase of the Rossby wave, the PDF of the sys-
tem remains strictly Gaussian for that kind of
multiplicative noise. Yet, since the multiplicative noise
in the frictional damping alters the energy of the wave,
the PDF becomes highly non-Gaussian.

The situation changes if the undamped trajectory does
not coincide with the circular lines of constant strength
of the multiplicative stochastic forcing. This situation
occurs if non-identical additive noise amplitudes

are used, or if a steady Rossby wave forcing
[ ]is imposed on the governing equation
(B.1). Then, the stationary PDF becomes slightly non-
Gaussian even in the case of a stochastic basic state.
Nonetheless, the effect of a stochastic frictional damping
on the non-Gaussianity of the systems PDF is much
stronger than the corresponding effect of a stochastic
basic state (see Fig. 6).
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