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ABSTRACT 23 

The need for skillful seasonal prediction of coastal sea level anomalies (SLAs) has become 24 

increasingly evident as climate change has increased coastal flooding risks. Here, we evaluate 25 

nine current forecast systems by calculating deterministic and probabilistic skill from their 26 

retrospective forecasts (“hindcasts”) over 1995-2015, for lead times up to 6-9 months, at two 27 

United States tide gauge stations (Charleston, SC and San Diego, CA). Additionally, we assess 28 

local skill enhancement by two post-processing/downscaling techniques: an observationally-29 

based multivariate linear regression and a hybrid dynamical approach convolving sea-level 30 

sensitivity to surface forcings with predicted surface forcing variations. We find that all these 31 

approaches face challenges stemming from whether modeled SLAs sufficiently represent 32 

observed local coastal SLA variations, because of both ocean model limitations and 33 

inadequacies in model initialization and ensemble spread. Some of these issues also complicate 34 

the ability of the post-processing techniques to improve probabilistic skill, even though they 35 

do somewhat improve deterministic skill. In general, deterministic hindcast skill is 36 

considerably higher for San Diego than Charleston, as expected from the stronger influence of 37 

ENSO. However, ensemble spread metrics such as forecast reliability and sharpness remain 38 

low for both locations, highlighting model deficiencies in representing uncertainty. 39 

Additionally, evaluating how well any technique predicts seasonal coastal sea level variations 40 

is complicated by the forced trend component and particularly how it is estimated. Moreover, 41 

model skill is matched by a stochastically-forced multivariate linear prediction model 42 

constructed from observations, suggesting that substantial improvement remains for predicting 43 

coastal seasonal SLAs, which could also include leveraging other predicted fields including 44 

sea level pressure and prevailing winds.   45 
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 46 

SIGNIFICANCE STATEMENT 47 

Coastal floodings have occurred more frequently in the last few decades, and it is 48 

anticipated that the number of such hazardous events will be increasing in the future. 49 

Therefore, accurate and reliable forecasting of coastal water level is becoming increasingly 50 

more important. This study thoroughly evaluated some current forecast techniques for sea 51 

level along the U.S. coasts and found that those techniques are still not capable to produce 52 

useable forecasting of anomalous sea level at U.S. east coast 3 months in advance, due to 53 

model inadequacy. The current generation of forecasting models were not designed for 54 

coastal sea level prediction, and we propose a few potential improvements that can 55 

potentially advance our capability in coastal sea level and inundation forecasting in the near 56 

future. 57 

  58 
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1. Introduction 60 

Coastal flooding is a growing concern for the United States (U.S.) due to ongoing sea 61 

level rise (Church et al., 2013; Church & White, 2006; May et al., 2023), seasonal-to-decadal 62 

sea level variability, and land subsidence (Nicholls et al., 2021). These flooding events 63 

impact both ecosystems and public safety, with damages to the natural environment and built 64 

infrastructure including backed-up drainages, road closures, and saltwater intrusions. 65 

Flooding risks are projected to continue increasing in the coming decades  (Taherkhani et al., 66 

2020; Thompson et al., 2021; Vitousek et al., 2017), so there is an urgent need for accurate 67 

and reliable coastal flood prediction, ideally for months to seasons in advance. High coastal 68 

water levels are forced by a combination of drivers occurring at multiple spatial and temporal 69 

scales, including tides, waves, anomalous river runoff, storm surges, and sea level anomalies 70 

(SLAs) driven by atmospheric and oceanic processes on both weather and climate time 71 

scales. While the tide is usually the largest component of local water level variability, coastal 72 

flooding events typically occur when high tide coincides with other conditions favorable to 73 

anomalously high water levels. Though the astronomical (tide) contributions to sea levels are 74 

already well predicted, a high tide flooding prediction system should consider all these other 75 

factors as well (Hague et al., 2023).  76 

Dusek et al. (2022) recently proposed a statistical approach to predict subseasonal to 77 

seasonal high tide flooding for U.S. tide gauges that are part of NOAA’s National Water 78 

Level Observation Network (NWLON), which predicts daily probabilities of exceedance of a 79 

predefined flooding threshold for each location. These forecasts were made by combining 80 

tide predictions with a statistical representation of the “non-tidal residual” component of local 81 

sea levels, which includes both the long-term linear trend and the climatological distribution 82 

of hourly SLAs. They also showed that these forecasts were improved by including a simple 83 

damped-persistence model of monthly SLAs based on the observed autocorrelation function 84 

determined for each location. We might expect further improvement by using climate model 85 

seasonal SLA predictions that are more skillful than damped persistence. 86 

Numerous studies have linked SLAs to patterns of seasonal climate variability (Han et al., 87 

2017; Han et al., 2019b; Long et al., 2020; Roberts et al., 2016; Wang et al., 2023). This 88 

suggests that SLAs might be potentially predictable on seasonal time scales (Shin & 89 

Newman, 2021), and many studies have assessed seasonal SLA prediction skill of both 90 
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dynamical and statistical models (Chowdhury et al., 2007; Long et al., 2023; McIntosh et al., 91 

2015; Miles et al., 2014; Widlansky et al., 2017). Long et al. (2021) constructed a 10-model 92 

ensemble forecast and assessed its skill of forecasting SLAs with lead times up to 12 months, 93 

finding that the dynamical models produce more skillful forecasts than a damped-persistence 94 

model at most open ocean locations. However, these models generally do not have higher 95 

coastal skill than does an observationally-based Linear Inverse Model (LIM), a multivariate 96 

empirical dynamical model that also allows for transient anomaly growth (Shin and Newman 97 

(2021). Additionally, Frederikse et al. (2022) employed a hybrid dynamical approach, where 98 

observed surface forcings and predicted surface forcings, from hindcasts generated by state-99 

of-the art seasonal forecast models, were projected onto SLA sensitivity at a specified 100 

location to global surface forcings computed by an ocean adjoint model. The resulting SLA 101 

hindcasts for the Charleston, SC location compared more favorably to observed tide gauge 102 

values there than the SLAs predicted by the same forecast model. Complicating all these skill 103 

assessments is that the pronounced externally-forced trend in sea level provides a substantial 104 

component of skill, at least as measured using commonly-used metrics (Wulff et al. 2022), 105 

that obscures the models’ ability to predict seasonal climate variations (Long et al., 2021; 106 

Shin & Newman, 2021).  107 

All the above studies of seasonal SLA prediction primarily focused on deterministic 108 

forecasts (e.g., ensemble means) and their skill assessment. However, warning end-users 109 

about high-tide flooding risks requires information about the likelihood of high-water 110 

(extreme) events (Dusek et al. 2022), which entails predicting tail probabilities. Therefore, it 111 

is also important to assess the probabilistic skill of coastal SLA prediction. For climate 112 

models, differences between multiple ensemble members (i.e., multiple forecast realizations) 113 

capture how initial uncertainty impacts the relative likelihood of future climate states. 114 

Probabilistic skill assessment then becomes a comparison, over the entire hindcast period, 115 

between the predicted probabilities of some extreme event and the actual chances of 116 

observing that event. 117 

To improve our ability to forecast coastal flooding risk on seasonal and longer time 118 

scales, NOAA and NASA initiated the RISE project, a collaborative effort focused on 119 

developing and assessing novel dynamical and statistical forecast methods of SLAs along 120 

U.S. Coasts. This paper is an outgrowth of that project, which initially focused on a pilot 121 

study of monthly SLA forecast skill for sample tide gauge stations on the U.S. West and East 122 

Coasts (San Diego, CA and Charleston, SC). In this study, we evaluate monthly hindcasts of 123 
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sea level anomalies for those two tide gauge stations using deterministic and probabilistic 124 

metrics. We also discuss challenges involved in making coastal SLA forecasts, including how 125 

trends in the model outputs impact skill assessment and how to use models that may not be 126 

correctly initialized with observed sea levels.  127 

The paper is organized as follows. Section 2 reviews issues involved in making coastal 128 

sea-level predictions from the output of various dynamical and statistical models. Section 3 129 

describes the forecast and observational datasets and the general skill metrics and methods 130 

used in this study. Section 4 presents the results of the deterministic and probabilistic skill 131 

assessment of seasonal SLAs, including a discussion of how this skill could be considerably 132 

impacted by both the presence of the externally forced trend and the inability of some 133 

hindcasts to represent it. Some remarks on how forecast models that are not initialized with 134 

satellite altimetry might be corrected follow in Section 5. Concluding remarks are made in 135 

Section 6, including recommendations for future advances in seasonal forecast systems to 136 

improve our prediction of coastal SLAs.  137 

2. Challenges for Coastal Sea Level Seasonal Forecasts 138 

As introduced above, previous studies have examined coastal SLA seasonal prediction 139 

skill. Yet it remains unclear how climate model output of monthly sea surface height 140 

anomalies should best be used to predict the risks of coastal flooding, and especially how 141 

these predictions should be verified against sea levels that are observed at tide gauges along 142 

the U.S. coastline. In most coupled climate models, the global ocean volume is conserved 143 

(i.e., they employ the Boussinesq approximation; Griffies & Greatbatch, 2012). As a result, 144 

these models cannot represent the global increase in sea level due to steric (thermal 145 

expansion) or barystatic (changes in water mass) processes, although they do allow for local 146 

height changes due to vertically integrated divergence/convergence, which is reflected in the 147 

model “sea surface height” (variable “zos” in the output from the Coupled Model 148 

Intercomparison Project (CMIP), as described in Griffies et al. (2016). This approach is 149 

sufficient for some purposes because changes in the global mean volume do not impact either 150 

ocean dynamics or coupling to the atmosphere. While the dynamical models considered here 151 

use a non-linear free surface, some older models use a “rigid lid approximation” with no 152 

variations in sea level at all; in this case, sea level must be calculated diagnostically from the 153 

model’s ocean bottom pressure and density profiles (Griffies & Adcroft, 2008). In all cases, 154 

however, local density variations due to temperature and salinity changes can impact sea 155 
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level locally, under the restriction that their global integral remains constant under the 156 

Boussinesq approximation.  157 

The local change of sea level 𝜼 can be expressed as (Griffies & Greatbatch, 2012): 158 

𝝏𝜼
𝝏𝒕
= 𝑸𝒎

𝝆(𝜼)
	− 	𝛁 ⋅ 𝑼	 −	∫ 𝟏

𝝆
	𝒅𝝆
𝒅𝒕
𝒅𝒛𝜼

*𝑯 ,       (1) 159 

where 𝑸𝒎 is water mass flux from the boundary (land ice melting, river runoff, etc.), 160 

𝝆(𝜼) is the water density at the surface, 𝑯 is depth of the ocean, and 𝑼 is the vertically 161 

integrated ocean current vector. The first term on the right-hand side of (1) is the contribution 162 

to the local sea level from mass input to the ocean, which is important to the inter-annual 163 

variability of global mean sea level (Hamlington et al., 2020). The second term is the 164 

vertically integrated divergence, accounting for the local change of dynamic sea level. The 165 

last term is the non-Boussinesq steric effect, which arises from density change following a 166 

fluid parcel and vanishes in a Boussinesq fluid. The global mean sea level change due to this 167 

non-Boussinesq steric effect can be corrected diagnostically as (Griffies & Greatbatch, 2012): 168 

𝜂(𝑠, 𝑡) = 𝜂-(𝑠, 𝑡) + ."
/
	𝑙𝑛	 0(1)

0(2)
        (2) 169 

where 𝜼(𝒔, 𝒕)	is the sea level at a given location s at time t, 𝜼𝑩(𝒔, 𝒕) is dynamic sea level 170 

from the ocean model, 𝑽𝟎 is the initial reference volume of the global ocean, 𝑨 is the global 171 

surface area of the ocean, 𝝆(𝟎) is the initial global volume-averaged density, and 𝝆(𝒕)	is the 172 

global volume-averaged density at time t. To verify sea level forecasts against global 173 

altimetry observations and reanalyses, and ultimately predict coastal sea level, this quantity, 174 

𝜼(𝒔, 𝒕), needs to be predicted, but unfortunately many seasonal forecast systems typically 175 

output only 𝜼𝑩(𝒔, 𝒕). 176 

Global reanalyses that assimilate both in situ and satellite observations are used to 177 

initialize and verify seasonal forecasts produced by climate models. For sea surface height, 178 

global observations are only available since 1993, from satellite altimetry. Some ocean 179 

reanalysis systems also use altimetry to correct the global mean sea level change (Balmaseda 180 

et al 2013). However, not all seasonal forecast climate models include altimetry in their 181 

initialization. Long et al. (2021) noted that models that included assimilation of altimetry data 182 

in their initialization tend to have a more realistic trend (due to both internal variability and 183 

external forcing) in their hindcasts than models that did not, which complicated skill 184 

comparison between models, especially in regions of strong sea surface height trends such as 185 

the U.S. East Coast. Initialization that uses altimetry appears to improve seasonal SLA 186 



8 

prediction in many ocean regions, although less obviously so along the North American 187 

coastline (Widlansky et al., 2023) where the benefit of altimetry observations may not have 188 

been fully realized in the present-generation of assimilation systems (Feng et al. 2024). 189 

Complicating matters further is that station-based tide gauges measure the water level 190 

relative to benchmarks on land (Gill & Schultz, 2001; Pugh & Woodworth, 2014). Also, 191 

some gauges are in bays or inlets, which can complicate their relationship to coastal sea level, 192 

and their measurements may include effects of freshwater flows from upstream (Piecuch et 193 

al., 2018). Also, since the land itself may move over time, tide gauge measurements can 194 

implicitly include a component due to vertical land motion (VLM) (Wöppelmann & Marcos, 195 

2016). While for seasonal forecasts VLM is so small that it can be neglected (and none of the 196 

regional or global models simulate VLM), it can become important over the entire multi-197 

decade period common to most seasonal hindcast datasets, where it is not easily accounted 198 

for (Ray et al., 2023; Zervas et al., 2013). 199 

Seasonal climate model forecasts are often “mean bias-corrected”, a post-processing step 200 

in which potentially erroneous model climatological mean states are replaced with the 201 

observed climatological mean state, which typically depends upon both the seasonal cycle 202 

and the forecast lead time (Stockdale et al 1993). That is, forecasts are verified by 203 

comparison of observed anomalies (relative to the observed mean state) to predicted 204 

anomalies (relative to the model mean state at that lead time). Typically, mean states are 205 

defined over a few decades, long enough to reduce sampling effects but still reasonably short 206 

enough to be representative of the current climate state in the context of long-term (i.e., 207 

centennial scale) climate change. Unfortunately, as climate warming has accelerated over the 208 

latter half of the 20th century, this latter assumption is not valid for SLAs at many locations, 209 

especially along the East and Gulf coasts that have experienced an accelerating trend in mean 210 

sea levels over the past few decades relative to the global mean (Hamlington et al., 2020). 211 

The presence of a trend, even over a relatively short climatological period, leads to two 212 

issues. First, as noted above, the forecast model may not be able to entirely simulate all the 213 

processes responsible for the sea level trend itself. Second, anomalies are typically defined 214 

relative to a fixed long-term mean, which means that the trend component is included as part 215 

of the anomaly and, therefore, has a pronounced impact on the estimation of seasonal skill 216 

(e.g., Wulff et al., 2022). This is illustrated in Fig. 1 by considering a simple case where 217 

hindcasts of seasonal variations are so unskillful that they are entirely uncorrelated with the 218 

observed time series, but where both hindcasts and observations are also superposed about a 219 
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common linear trend. Then, the resulting two time series would be well correlated (Fig. 1a), 220 

making the seasonal forecast system appear skillful. Conversely, an incorrect trend in the 221 

hindcasts relative to observations could reduce skill even where the seasonal variations of the 222 

hindcasts and observations were otherwise well correlated (Fig. 1b). In cases such as 223 

illustrated in Fig. 1, we might simply remove or correct the linear trend. For example, 224 

Balmaseda et al (2024) show that a simple linear trend correction adds skill to seasonal SLA 225 

forecasts. More generally, however, evaluating the impact the trend on local hindcast skill 226 

becomes problematic when the externally-forced trend is nonlinear, particularly for relatively 227 

short records when it is unclear how to separate the trend from natural variability (e.g., 228 

Solomon et al. 2011). 229 

3. Data and Methods 230 

Here, we discuss how we assess hindcast skill from various seasonal forecast systems, 231 

encompassing purely dynamical models, purely statistical models, and hybrid techniques. 232 

Since previous studies of (deterministic) sea level forecast skill all used different hindcast 233 

periods, we assess skill of all these techniques for 1995-2015, which is the common period 234 

for hindcast availability from all the forecast techniques. 235 

3.1 Tide gauge verification data 236 

The verification data are based on monthly mean sea level data at the San Diego and 237 

Charleston NOAA NWLON tide gauges from 1995 to 2016, obtained from the Permanent 238 

Surface for Mean Sea Level (PSMSL; Holgate et al., 2013). SLAs are defined by removing 239 

the 21-year monthly mean climatology from each tide gauge time series. We limited our skill 240 

assessment to these two stations since the adjoint model of the Estimating Circulation and 241 

Climate of the Ocean (ECCO) system had only developed hindcasts there.  242 

While we focus on SLA prediction at the tide gauges, we also discuss results from three 243 

other observationally-based gridded datasets: the SSALTO/DUACS multimission satellite 244 

altimetry dataset (Hauser et al., 2021; also known as AVISO in the literature) with a 1/4º 245 

spatial resolution, and three ocean reanalyses, ORAS5 (Zuo et al., 2019) with a 1/4º spatial 246 

resolution, ECCO (Forget et al., 2015) with 1/4º spatial resolution, and GLORYS12 (Jean-247 

Michel et al., 2021) with a 1/12º spatial resolution. As discussed in Section 2, the tide gauges 248 

measure quantities beyond what may be captured by global oceanic datasets, which is 249 

illustrated by comparing the gauge time series with the nearest grid value from the gridded 250 

datasets, shown in Fig. 2. Also shown is the correlation of the monthly gauge-located SLAs 251 
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of each of the gridded datasets and the tide gauge time series. All the gridded products 252 

capture the San Diego tide gauge reasonably well, but ORAS5 and ECCO capture only about 253 

half the monthly SLA variance observed at the Charleston tide gauge, which may be partly 254 

due to the relatively low weight that coastal data is given in their data assimilation systems 255 

(Feng et al. 2024). Finally, we also show linear and quadratic trend lines to each tide gauge 256 

record, determined by fitting a line or quadratic curve, respectively, to the data by minimizing 257 

the mean squared error. Note that there appears to be some upward trend over the period of 258 

record, which seems to have accelerated for both gauges after about 2011 when global mean 259 

sea surface temperatures also began to increase more rapidly (Garcia-Soto et al., 2021), so it 260 

is unclear how well either least-squares fit captures the externally-forced trend component. 261 

3.2 Hindcast techniques and data 262 

First, we consider hindcasts from three traditional assimilation-initialized seasonal 263 

forecast systems based on coupled dynamical models: CCSM4 (Community Climate System 264 

Model Version 4, Kirtman et al., 2014), SPEAR (Seamless System for Prediction and Earth 265 

System Research, Delworth et al., 2020; Lu et al., 2020), and ECMWF SEAS5 (Johnson et 266 

al., 2019). Apart from other modeling framework differences, including horizontal resolution 267 

(see Table 1), these forecast systems differ in how the ocean state is initialized and how the 268 

ocean model simulates global mean sea level evolution (although note that all the ocean 269 

models have a free surface): 270 

(1) CCSM4 has the Parallel Ocean Program version 2 (POP2) model as its ocean 271 

component and is initialized with the Climate Forecast System Reanalysis (CFSR). Though 272 

CFSR captures the realistic variation of ocean heat content and hence the variation of SLA 273 

(Xue et al., 2011), the POP2 model by construction requires the global mean sea level to 274 

remain constant. Consequently, CCSM4 has no trend in its global mean sea level. Also, 275 

CCSM4 does not account for global mean variations in freshwater fluxes. 276 

(2) SPEAR uses its ocean data assimilation to initialize its ocean model, the Modular 277 

Ocean Model Version 6 (MOM6). This data assimilation incorporates observed temperature 278 

and salinity profiles from ARGO based on the Ocean Tendency Adjustment (OTA) outlined 279 

in Liu et al. (2020). SPEAR does not explicitly simulate the global mean steric sea level 280 

evolution from internal changes in heat and salt due to the previously discussed limitations of 281 

a Boussinesq model. Still, unlike CCSM4, it does consider the imbalance of the hydrological 282 
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cycle of the climate system, which is accounted for within the topmost layer of the ocean 283 

model (Cazenave et al., 2012).  284 

(3) SEAS5 also uses a Boussinesq ocean model, the Nucleus for European Modelling of 285 

the Ocean (NEMO) model. Unlike SPEAR, however, the ocean initial conditions of SEAS5 286 

include information from the altimeter observations via assimilation, including the global 287 

steric change (Zuo et al., 2019). Therefore, the SEAS5 forecasts of sea level will inherit the 288 

information from the sea level trend in their initial conditions and have a more realistic sea 289 

level trend both regionally and globally. 290 

The impact of some of these configuration differences in each forecast system is seen 291 

when comparing observationally-based monthly anomalies of global-mean sea level, 292 

determined from the ORAS5, GLORYS12, and AVISO datasets (Section 3.1), to globally 293 

averaged lead-1 month SLAs from the CCSM4, SPEAR, and SEAS5 hindcasts (Fig. 3). 294 

[Note that here we define the lead-1 month as the first month after initialization, so that it is a 295 

combined representation of the initial climate state and the short-term model evolution from 296 

it.] Figure 3a shows that while there are some differences between the observationally-based 297 

time series, all three capture the long-term trend in the global mean, as do the SEAS5 lead-1 298 

hindcasts. The observed evolution is not captured by the lead-1 hindcast anomalies output 299 

from either the SPEAR or the CCSM4 (Fig. 3b), which, as noted above, do not include the 300 

global-mean steric or barystatic components. For the SPEAR, following the approach 301 

discussed in Section 2, the global-mean steric component was computed from one ensemble 302 

member of the lead-1 hindcasts and added to the global mean lead-1 ensemble-mean hindcast 303 

(Fig. 3b) to produce the “SPEAR+steric” curve in Fig. 3a, yielding a closer match to 304 

observations. Still, there remains a discrepancy, likely due to the lack of information about 305 

changes in initial oceanic volume that assimilation of satellite altimetry could provide. 306 

Finally, comparing the linearly detrended global-mean sea level anomalies for the three lead-307 

1 hindcast datasets to that determined from ORAS5 (Fig. 3c) shows the CCSM4 and SPEAR 308 

initializations may not entirely capture interannual variations in the global mean sea level, 309 

even apart from the trend. 310 

We also created a downscaled version from each of the dynamical forecast ensembles, 311 

using the technique demonstrated in Long et al. (2023): A seasonally invariant deterministic 312 

downscaling operator was constructed by multivariate linear regression of the high-resolution 313 

(1/12°) GLORYS12 ocean reanalysis data against its coarse-grained (1°) counterpart. Then, 314 

the downscaling operator is applied to each ensemble member of each dynamical hindcast, 315 
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generating an ensemble of high-resolution coastal sea level hindcasts that we refer to as 316 

DownscalingCCSM4, DownscalingSPEAR, and DownscalingSEAS5, respectively. By 317 

downscaling each ensemble member rather than the overall ensemble-mean (as was done in 318 

Long et al. (2023)), we generate a downscaled hindcast ensemble whose spread is based upon 319 

the original model ensemble. Note that the downscaling operator is in a reduced Empirical 320 

Orthogonal Function (EOF) space, so that not all the variance of the original hindcasts is 321 

retained in the downscaled hindcasts. Multi-model ensemble means were constructed using 322 

either the hindcast ensembles from the three GCMs or their corresponding downscaled 323 

hindcast ensembles.  324 

Frederikse et al. (2022) developed a hybrid dynamical approach for seasonal SLA 325 

prediction. They first computed the sensitivities of the coastal sea level at a specific location 326 

to different global atmospheric surface forcings, using the ECCO adjoint model. Then, SLA 327 

prediction is made by convolving these sensitivities to observed and predicted atmospheric 328 

surface forcings, made up of observed (ECCO) forcings up to 12 months prior to 329 

initialization time followed by predicted atmospheric forcings up to 12 months after 330 

initialization time. Note that the precise length of applied forcings depends upon forecast lead 331 

time (e.g., for a 5-month lead, the forcing consists of 12 months of observed forcing followed 332 

by 5 months of predicted forcing). In Frederikse et al. (2022), the predicted atmospheric 333 

forcing fields are from a 10-member CCSM4 model. In the present study, we also use a 15-334 

member SPEAR model in addition to the 10-member CCSM4 model for the predicted surface 335 

forcings. The resulting hindcast ensembles are named ECCO_CCSM4 and ECCO_SPEAR, 336 

respectively. Hereafter, this approach is referred to as the ECCO adjoint approach. 337 

Note that for both the CCSM4 and SPEAR, we assess the skill of the original dynamical 338 

hindcasts, the downscaled version of those hindcasts, and the ECCO adjoint model forced by 339 

those hindcasts (albeit using predicted atmospheric surface forcing variables rather than 340 

predicted sea surface heights). This yields an ideal suite of forecasts to compare each method 341 

because they are all derived from the same dynamical forecast system (CCSM4 or SPEAR).  342 

Finally, we also included hindcasts from a LIM, trained using near-global gridded fields 343 

of SST from HadISST (Kennedy et al., 2019) and SLA from ORAS4 (Balmaseda et al., 344 

2013) from 1961 to 2015 (Shin & Newman, 2021). The LIM’s deterministic forecast is 345 

represented by its ensemble mean, and its fixed but lead-dependent expected error statistics 346 

are used to estimate the uncertainty (i.e., ensemble spread) of its forecasts (equation (8) in 347 

Penland & Sardeshmukh, 1995). The LIM hindcasts were ten-fold cross-validated for the 348 
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entire 1961-2015 period, but for this paper, we assess skill only for those hindcasts initialized 349 

in the common 1995-2015 period. 350 

Similar to earlier studies (Frederikse et al., 2022; Long et al., 2021), we use a univariate 351 

AR1 model, or damped persistence (van den Dool, 2006), as a minimum baseline of skill for 352 

all the evaluated forecast techniques. Note that LIM and damped persistence are similar in 353 

that both are determined from the lead-1 autocovariance of the data, but the LIM yields a 354 

multivariate matrix operator rather than a univariate scalar, so it also yields transient anomaly 355 

growth that leads to additional state-dependent predictability (Shin & Newman, 2021). Like 356 

the LIM, an AR1 model has fixed but lead-dependent expected error statistics, which can be 357 

used to estimate its prediction uncertainty. The damped-persistence coefficients were 358 

determined from each tide gauge record, using data only during the hindcast period, and 359 

cross-validated using a leave-one-out methodology.  360 

Most dynamical models are initialized with a near-instantaneous or daily field; this is on 361 

the first day of the month for the three dynamical forecast systems assessed here. The first 362 

monthly mean forecast is then the mean of the first month of the forecast run, sometimes 363 

called the “Month 0.5” forecast, i.e., centered in the middle of the calendar month (e.g., 364 

Kirtman et al., 2014). In contrast, empirical models may be initialized with observed (tide 365 

gauge/reanalysis) monthly mean anomalies centered on the previous month, so that the 1-366 

month lead LIM/damped-persistence forecast and the dynamical model Month 0.5 forecast 367 

verify simultaneously. Following Newman and Sardeshmukh (2017), for clarity we renamed 368 

both these forecasts the “Month 1” forecast (i.e., the first month of the forecast period), and 369 

so on for increasing forecast leads (see also schematic in Ding et al., 2018). 370 

For the three dynamical forecast systems (CCSM4, SPEAR, and SEAS5) that are 371 

initialized using full-field variables, a mean bias correction is first applied by removing the 372 

lead-time dependent climatology determined during 1995--2015 (Smith et al., 2013), as 373 

discussed in Section 2. The statistical downscaling is applied to these bias-corrected anomaly 374 

fields. LIM hindcast anomalies, initially defined relative to the 1960-2015 period, are 375 

adjusted to be relative to the 1995-2015 climatology, but otherwise are uncorrected. The 376 

ECCO_CCSM4 and ECCO_SPEAR each are forced with the mean bias-corrected dynamical 377 

model atmospheric forcing ensemble members from CCSM4 and SPEAR hindcasts, 378 

respectively, with an additional mean bias-correction applied to the resulting adjoint model 379 

hindcasts. 380 
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3.3 Prediction skill metrics 381 

Deterministic skill is assessed using the anomaly correlation coefficient (ACC) between 382 

observations and ensemble-mean predictions, as a function of lead time, either computed over 383 

all calendar months or calculated separately for each verification calendar month. ACC 384 

measures how well a model can predict the phase and sign of observed anomalies (Wilks, 385 

2011). We also computed the root-mean-squared (RMS) skill score (RMSSS; e.g., Newman 386 

and Sardeshmukh (2017)), defined as ε ≡1 −	𝜎?, where the standardized error 𝜎? = 𝜎/𝜎567, 𝜎 387 

is the RMS forecast error between observations and ensemble-mean predictions, and 𝜎567 is 388 

the observed climatological RMS value. RMSSS is a measure of the average relative 389 

amplitude of the forecast error, defined so that a perfect forecast has RMSSS=1, a 390 

climatological forecast (i.e., a predicted anomaly of zero) has RMSSS=0, and a forecast 391 

poorer than climatology has a negative score. 392 

Probabilistic skill is assessed using two different metrics. First, we determined reliability 393 

diagrams (Weisheimer & Palmer, 2014), where hindcasts are grouped into bins according to 394 

the predicted probability (horizontal axis), and then plotted against the frequency at which 395 

observed events occur (vertical axis). For a perfectly reliable forecast system, predicted 396 

probabilities should match observed probabilities, in which case the reliability curve lies 397 

along the diagonal: If an event is predicted as having an x% probability of occurring, then the 398 

event should occur x% of the time. Also included are “sharpness” diagrams, showing how 399 

often each forecast probability is issued, particularly distinguishing forecasts other than the 400 

climatological probability (Wilks, 2011). For example, for a three-category tercile forecast, a 401 

sharp forecast system should be able to issue forecast probabilities other than the 402 

climatological probability of 0.33. We also calculate the reliability value as a single metric 403 

for easy comparison across techniques (Toth et al., 2006). 404 

Finally, ROC (Receiver Operating Characteristic; Kharin & Zwiers, 2003) curves were 405 

constructed by plotting the false alarm rate against the hit rate for different probability 406 

thresholds. In general, as we lower the probability thresholds, more ‘positive’ forecasts will 407 

be issued, and hence, both the hit rate and the false alarm rate will increase. A good forecast 408 

system has a high hit rate while minimizing false alarms, so an ideal ROC curve is away from 409 

the diagonal towards the upper left corner of the diagram (Mason & Graham, 1999), thereby 410 

maximizing the area under the ROC curve (ROC area). ROC skill score (ROCS), defined as 411 

ROCS = 2(ROC area - 0.5), measures this quantity. ROCS values can range from -1 to +1, 412 

where ROCS<0 indicates skill worse than climatology (i.e., random chance). 413 
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4 Hindcast skill 414 

Before we show the skill evaluation, in Figure 4 we display an example of hindcast 415 

ensembles from each of the techniques for both San Diego and Charleston, initialized as of 416 

August 1, 1997 (the LIM is initialized using the monthly anomalies of July 1997) with lead 417 

times up to 12 months. In this case, August 1997 is Month 1, September 1997 is Month 2, 418 

and so on. 419 

The anomalous sea level at San Diego was heavily influenced by that year’s strong El 420 

Niño event and the associated coastally trapped Kelvin wave that propagated along the west 421 

coast of North America from the Tropics (Hamlington et al., 2015; Ryan & Noble, 2002). 422 

This led to an observed SLA maximum of nearly 18 cm in San Diego by November. While 423 

the models had some hint of this coastal Kelvin wave, it was too weak and delayed by a 424 

couple of months (Balmaseda et al., 2002), which resulted in a relatively flat SLA response, 425 

even for the individual ensemble members. This error was also apparent for hindcasts 426 

initialized earlier in June and July, and it was not until the October initialization that the 427 

models captured the timing of the November maximum (not shown, but see 428 

https://www.psl.noaa.gov/forecasts/SeaLevel/#RISE for all hindcasts and verifications used 429 

in this paper). Interestingly, the three models also appeared to predict a similar delayed and 430 

too-weak SLA response in San Diego for the 2009-10 and 2015-16 El Niño events (not 431 

shown). The ensemble spread of the downscaled and ECCO adjoint approaches was mostly 432 

reduced compared to the original models’ spread. The observed November maximum was not 433 

included within any technique’s ensemble spread, including the LIM’s 2 standard-deviation 434 

ensemble spread (shading).  435 

For Charleston, all nine techniques predicted a flat SLA response with increasing lead. 436 

Notably, the observed February 1998 SLA maximum of 20 cm was not contained within the 437 

ensemble spread of any forecast technique. There is a striking difference between the 438 

observed tide gauge value and the Month 1 forecast for SPEAR, DownscalingSPEAR, 439 

SEAS5, and DownscalingSEAS5. The ECCO adjoint approach appears to have improved the 440 

comparison between Month 1 and the corresponding observed tide gauge monthly mean 441 

anomaly. Finally, note ECCO_SPEAR appears to reduce ensemble spread relative to SPEAR, 442 

but the opposite is true for ECCO_CCSM4 compared to CCSM4. 443 

4.1 Deterministic skill 444 
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The deterministic skill of all the techniques for the common hindcast period (Fig. 5) is 445 

considerably higher at San Diego than at Charleston, in agreement with previous studies 446 

(Long et al., 2021; Shin & Newman, 2021). For San Diego, SEAS5 and DownscalingSEAS5 447 

have the highest skill, exceeding the multi-model ensemble mean (MMM) skill largely 448 

because the CCSM4 skill is poor. The LIM has skill comparable to MMM, SEAS5, and 449 

SPEAR for shorter leads, but its skill degrades faster for longer leads. The downscaling 450 

technique improves of CCSM4 but not SPEAR skill, consistent with Long et al. (2023). The 451 

ECCO adjoint approach improves upon CCSM4 skill even more than the downscaling 452 

technique but worsens SPEAR skill. The multi-model mean of the downscaled hindcasts has 453 

a similar skill to that of the dynamical model hindcasts. Note that for Months 1-2, only 454 

SEAS5 and the LIM have a skill that exceeds damped persistence (gray background shading), 455 

but as lead time increases, more techniques show relatively greater skill.  456 

At Charleston, in contrast, the LIM has the highest skill, with SEAS5 having the highest 457 

skill of the dynamical models, slightly exceeded by the multi-model mean at longer leads. 458 

The ECCO adjoint approach improved the skill of both models, especially the CCSM4, while 459 

the downscaling technique slightly improved the skill of SPEAR but not of CCSM4. 460 

As discussed in Section 2, hindcast skill evaluation is complicated by the existence of a 461 

pronounced externally-forced sea level trend, which has pronounced regional variations (e.g., 462 

cf. San Diego and Charleston in Fig. 2) that also are captured differently by the initializations 463 

of the different forecast techniques. For example, the higher Charleston skill for SEAS5 and 464 

the LIM might be due to their more accurate initialization of the externally-forced trend, 465 

although recall from Fig. 2 that the ORAS5 (and likewise the ORAS4, which the LIM is 466 

trained upon) still has some important differences from the tide gauge in Charleston. To 467 

evaluate the impact of this trend on hindcast skill, however, we would need to first 468 

distinguish it from natural internal climate variability, which is complicated by the short 469 

observational dataset (e.g., Deser et al., 2014; Frankignoul et al., 2017). In turn, whether the 470 

externally-forced trend is linear or nonlinear, which is unclear from Fig. 2, can impact 471 

estimates of internal variability.  472 

How to precisely determine the externally forced trend is beyond the scope of this study 473 

(although see discussion in Shin & Newman, 2021), so here we instead test the sensitivity of 474 

our skill assessment upon the two different trend estimates shown in Fig. 2. Specifically, we 475 

first remove either the linear trend or the quadratic trend from both hindcasts and verification 476 

data, determined separately for each, and then recompute skill metrics of the resulting 477 
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detrended data. The results for linear (quadratic) detrending are shown in Figs. 5cd (Figs. 478 

5ef). Additionally, since a forced trend could contribute to persistence, we recomputed the 479 

damped-persistence models separately for each detrending. 480 

All the techniques have considerably reduced skill for the detrended hindcasts (verified 481 

against detrended observations) at Charleston, consistent with earlier studies (Long et al., 482 

2021; Shin & Newman, 2021), suggesting that much of the apparent skill on the U.S. East 483 

Coast is due to the pronounced trend there over the past three decades (Han et al., 2019a). 484 

That is, much of the Charleston skill is not from hindcasts that capture month-to-month 485 

variations of sea level but rather arises because both hindcasts and observational anomalies 486 

have a large trend component (relative to the constant climatological 1995-2015 mean) that 487 

artificially inflates estimates of the prediction skill of monthly variations (e.g., Fig. 1a). Note 488 

that while the qualitative impact of detrending on skill is similar for all the techniques, its 489 

greatest impact occurs for those techniques with relatively realistic initializations including 490 

realistic trends. However, determining the quantitative impact of the trend on skill seems 491 

sensitive to the assumed form of the trend. For example, linear detrending (Fig. 5d) causes a 492 

larger decrease in SEAS5 skill than does quadratic detrending (Fig. 5f). On the other hand, 493 

the skill of both SPEAR and the ECCO adjoint approaches decreases more for quadratic 494 

detrending. Still, for both detrending methods, the skill of many of the forecast techniques 495 

exceeds damped persistence even at longer forecast leads. Finally, note that while linear 496 

detrending has a much less pronounced impact on hindcast skill for San Diego, its impact is 497 

not negligible, especially for some techniques and with increasing leads.  498 

Using RMSSS as the deterministic skill metric rather than ACC (Fig. 6) gives a similarly 499 

qualitative picture for San Diego skill, including the relative ordering of skill across the 500 

techniques and the impact of detrending. However, for Charleston, with the RMSSS metric, 501 

there are now fewer techniques whose skill exceeds damped persistence, although the relative 502 

position of the LIM is unchanged; after detrending, only a few techniques have skill that even 503 

matches damped persistence, with RMSSS that is only slightly positive. Additionally, it is 504 

apparent in Fig. 6 that when the dynamical models’ ACC goes below about 0.4, RMSSS 505 

becomes negative, indicative of skill worse than a fixed prediction of a zero anomaly (i.e., 506 

climatology). However, this is not the case for either the LIM or damped persistence; for 507 

example, for damped persistence, RMSSS approaches zero only as ACC approaches zero. 508 

Interestingly, for single-member forecast systems, ACC=0.4 is equivalent to 100% 509 

standardized error (Livezey & Chen, 1983). 510 
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Hindcast skill for both stations depends upon the target month, especially for San Diego 511 

(Fig. 7). This result was found in some previous studies (Long et al., 2023; Shin & Newman, 512 

2021) as well, but here the seasonality of skill for all the forecast techniques is compared 513 

together for a common period. For San Diego, skill maximizes for forecasts verifying during 514 

winter, which could be associated with the El Niño-Southern Oscillation (ENSO) signal that 515 

typically also has a wintertime maximum along the West Coast (e.g., Shin & Newman, 516 

2021). Some techniques also show skill for up to 1-2 season leads when verifying during 517 

summer, consistent with an ENSO signal that is not predictable until after spring (the “spring 518 

predictability barrier”; e.g., Tippett & L’Heureux, 2020). Interestingly, the ECCO adjoint 519 

approach especially improves skill during summer, particularly for the CCSM4, whose skill 520 

is otherwise considerably worse than the other models. In contrast, changes in skill from 521 

downscaling had a much weaker seasonal dependence. Still, neither ECCO_CCSM4 nor 522 

ECCO_SPEAR summertime skill exceeds that of the LIM or SEAS5. SEAS5 shows 523 

significant skill up to Month 7 throughout the year. Linear and quadratic detrending have 524 

quantitatively similar effects to those in Fig. 5, mainly for spring and summer verifications 525 

when skill is already lower (not shown). 526 

For Charleston, where skill is generally much lower than for San Diego, there is a less 527 

clear impact of seasonality upon skill (Fig. 8). Some of the techniques (DownscalingCCSM4, 528 

SPEAR, and DownscalingSPEAR) only have significant positive ACC during the early 529 

winter months. In contrast, SEAS5 and DownscalingSEAS5 have significant skill during 530 

spring and somewhat during fall, even at the longest leads available, with the LIM having a 531 

similar pattern with generally higher ACC values. Again, the ECCO adjoint approach boosts 532 

skill during the warm season, yielding significant skill for April to August verifications 533 

through Month 5 that exceeds (albeit not significantly) the skill from any other techniques. 534 

Interestingly, much of the ECCO adjoint skill increase for Charleston is retained even after 535 

detrending (Fig. 9). However, the degree of improvement is less when the trend line is 536 

quadratic (not shown) rather than linear.  537 

4.2 Probabilistic skill 538 

4.2.1 Reliability and sharpness 539 

As was the case for deterministic skill, probabilistic metrics are better for San Diego (Fig. 540 

10) than for Charleston (Fig. 11). Reliability is generally better for predictions of upper than 541 

lower tercile events. The most reliable forecasts are made by the LIM and SEAS5, even for 542 



19 

the lower tercile events. For San Diego, the LIM is more reliable than the other techniques at 543 

this lead (Month 4), even as its deterministic skill is relatively poorer. For Charleston, except 544 

for the LIM, none of the hindcasts are particularly reliable, and even the LIM is more reliable 545 

for the upper than the lower tercile. The ECCO adjoint technique also has minimal impact on 546 

reliability, slightly improving CCSM4 but making SPEAR worse, notably for the lower 547 

tercile. The multi-model means do not improve overall reliability at either location (not 548 

shown) and slightly degrade it for the downscaled hindcasts. However, this may be due to the 549 

small number of models we used. 550 

The inset sharpness diagrams show that while all the models can issue forecast 551 

probabilities other than the climatological value of 0.33, these hindcasts are dominated by 552 

very low forecast probabilities (i.e., they are generally clustered in the leftmost bins). 553 

Interestingly, SPEAR and SEAS5 tend to have more forecasts with a higher probability for 554 

Charleston than for San Diego (note their U-shape sharpness diagrams). Finally, note that the 555 

adjoint technique reduces the occurrence of higher forecast probabilities (e.g., 0.7 and 0.9 556 

bin) compared to the models upon which they are based, particularly for Charleston, 557 

consistent with the reduced ensemble spreads for the ECCO_CCSM4 and ECCO_SPEAR 558 

seen in Fig. 4. 559 

After linearly detrending Charleston hindcasts and observations, hindcasts become much 560 

less reliable (Fig. 12). That is, much of the (limited) reliability seen in Fig. 11 represents 561 

probabilities from hindcasts either early in the hindcast period when both hindcast and 562 

observed anomalies include a trend component that is relatively large and negative (when 563 

defined as an anomaly relative to the long-term mean), or late in the period when that trend 564 

component is relatively large and positive. It is not entirely surprising that the reliability and 565 

sharpness of the techniques with more realistic initialization (SEAS5 and LIM) are most 566 

impacted by the detrending. As with the deterministic metrics, the impact of the trend on 567 

reliability is much less at San Diego. Additionally, reliability is less sensitive than ACC to 568 

removing a quadratic rather than a linear trend, at least for the three-category approach used 569 

here (not shown). 570 

4.2.2 ROC skill scores 571 

The ROC curves for San Diego for Month 4 (Fig. 13) show that all the techniques have 572 

better performance in predicting upper tercile than lower tercile events. SEAS5, Downscaling 573 

SEAS5, and LIM have the best performance, with ROCS values between 0.78 to 0.82 for the 574 
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upper tercile and 0.65 to 0.77 for the lower tercile, followed in order by the SPEAR and then 575 

the CCSM4. The downscaling and ECCO hybrid methods improve probabilistic skill for 576 

CCSM4 but not so much for SPEAR. The multi-model mean improves upon CCSM4 and 577 

SPEAR (and their related hindcasts) for both upper and lower tercile hindcasts but does not 578 

improve upon SEAS5. Note also that many techniques have relatively low hit rates and false 579 

alarm rates even for the lowest classification threshold because the techniques do not issue 580 

enough ‘positive’ event predictions overall.  581 

For Charleston at Month 4 (Fig. 14), ROCS values for upper and lower terciles are 582 

generally lower than for San Diego. The LIM, SEAS5, and DownscalingSEAS5, in that 583 

order, have the highest ROCS values. The CCSM4 and its derived models 584 

(DownscalingCCSM4 and ECCO_CCSM4) all have ROCS near zero, indicating that the 585 

CCSM4 has no skill compared to a random classification model. The SPEAR and its derived 586 

models are only slightly better. The multi-model mean also again improves upon CCSM4 and 587 

SPEAR but not SEAS5. 588 

These results are representative of other forecast lead times, which is demonstrated by the 589 

ROCS values for each of the techniques as a function of lead (Figs. 15 and 16). For San 590 

Diego (Fig. 15), SEAS5, DownscalingSEAS5, and LIM have the highest ROCS values 591 

through Month 7. The CCSM4 and its derived hindcasts have the lowest ROCS values, with 592 

SPEAR in between. Neither downscaling nor ECCO hybrid methods improve ROCS values 593 

of SEAS5 and SPEAR, although the ECCO hybrid does improve CCSM4. For Charleston 594 

(Fig. 16), the overall skill scores are lower than for San Diego, where again, the highest 595 

ROCS values are for SEAS5, DownscalingSEAS5, and LIM. Similarly, the downscaling 596 

technique does not improve the skill score, while the ECCO hybrid method slightly improves 597 

the skill over shorter lead times. 598 

The removal of the linear trend also effectively reduces ROCS for SEAS5 and 599 

DownscalingSEAS5, but less so for the LIM (Fig. 16). Detrending improves the ROCS of 600 

CCSM4 and DownscalingCCSM4, mostly because the removal of the spurious trend in those 601 

model hindcasts improves the quality of their hindcasts, in the same way that the detrending 602 

degrades the hindcasts which have more realistic trends (Fig. 1b). In contrast to the 603 

deterministic skill, the impact of the trend upon probabilistic skill does not much depend 604 

upon whether the trend is estimated as quadratic or as linear (not shown). 605 

5 Correcting forecasts from models with inadequate sea level initialization 606 
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As discussed in Section 2, using and evaluating dynamical model predictions of coastal 607 

SLAs can be challenging when the model output sea level variable does not entirely 608 

correspond to tide gauge measurements, particularly when the model is not initialized with 609 

sea level observations. Perhaps this could be alleviated by evaluating prediction skill after 610 

removing the global mean from both verifications and model hindcasts, addressing the 611 

absence of the steric contribution to global mean sea level in forecast models and/or their 612 

initializations. We considered this approach as a possible solution both to this problem and to 613 

the problem of evaluating detrended skill since a significant portion of the trend is related to 614 

global mean sea level rise (e.g., Fig. 3a), although for some, if not most, tide gauges the trend 615 

also has VLM contributions. Unfortunately, global mean sea level is also impacted by large 616 

scale internal variability (e.g., Fig. 3c), including potentially predictable climate variations 617 

such as ENSO (Cazenave et al., 2012; Wang et al., 2021). Hence, removing the global mean 618 

component was inadequate to comprehensively evaluate the skill of seasonal prediction of 619 

regional sea level anomalies. Likewise, removing basin-wide means was also unsuccessful. 620 

Alternatively, we might assume that models whose sea level is incompletely initialized 621 

(e.g., without altimetry in the data assimilation) might be capable of predicting month-to-622 

month sea-level changes so long as other ocean variable initializations (e.g., temperature and 623 

salinity) are not substantially impacted. Such an initialization error might be considered 624 

simply an offset, addressed by adjusting the hindcasts. Let the predicted monthly sea level 625 

state for initial time 𝑡 and lead time 𝑗 be ZC(𝑡, 𝑗).  Then the prediction increment, or “delta”, of 626 

sea level can be calculated from the model output as: ΔZC(𝑡, 𝑗) = ZC(𝑡, 𝑗) − ZC(𝑡, 𝑗 − 1), for all 627 

lead times. Finally, the adjusted forecast is determined by incrementing the observed initial 628 

monthly anomaly, Z(𝑡, 0), with each delta at different lead times (i.e.,  Z(𝑡, 0) + ΔZC(𝑡, 𝑗)), 629 

yielding a “delta-corrected sea level prediction” whose month-to-month change is identical to 630 

the original model forecast but is “initialized” with observations. However, this leaves us still 631 

with the choice of the initial observed monthly SLA. The most recent observed monthly sea 632 

level at the tide gauge is the previous month, or Z(𝑡, −1). Using that as the initialization 633 

means that we still need ΔZC(𝑡, 0), which we determine from the difference between the 634 

current Month 1 and previous Month 1 forecasts (ΔZC(𝑡, 0) = ZC(𝑡, 0) − ZC(𝑡 − 1,0)); then, 635 

ZC(𝑡, 0) = Z(𝑡, −1) + ΔZC(𝑡, 0), and the forecasts can be incremented from that point onwards. 636 

There are two benefits of this correction. First, the inconsistent trend between the model 637 

and observations is no longer an issue because the realistic trend is built into the corrected sea 638 

level. Second, the imperfect initialization is less of a problem since starting from the previous 639 
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month’s observed SLA will largely eliminate the difference between model initialization and 640 

observation.  641 

The delta-corrected sea level prediction is particularly appealing for issuing real-time 642 

SLA predictions that are appropriate for specific tide gauges, especially when using models 643 

initialized without a trend component to predict SLAs for tide gauges with pronounced 644 

observed trends (which over a few decades could also include vertical land motion). Note that 645 

all delta-corrected tide gauge hindcasts include the observed trend after correction, allowing 646 

comparison with other techniques already initialized with observations. The delta-correction 647 

improves the ACC for the models without a correct trend, both the CCSM4 and the SPEAR, 648 

especially for San Diego (Fig. 17; cf. lines with circles to same-colored lines with crosses). 649 

Note that not only is the skill of the original model hindcasts improved, but the skill of the 650 

related downscaled and hybrid model hindcasts are as well. Interestingly, the results at 651 

Charleston are not as consistent, even though the sea level trend is larger at Charleston than 652 

San Diego. This may be due to the larger vertical land motion component at San Diego 653 

(Zervas et al., 2013), which the delta-correction could also capture.  654 

Note that an error is introduced for the delta estimate in Month 1 since it uses two 655 

separate model hindcasts initialized at two different times. This error could then propagate 656 

through the delta-corrected hindcasts for all lead times. The delta-correction degrades the 657 

skill of both SEAS5 and the LIM (not shown), whose initializations include observed sea 658 

level information that better captures observed trends. Hence, our delta-correction method is 659 

only an interim remedy for models with inadequate initialization and/or that do not output the 660 

global mean steric component forecasts. 661 

6 Concluding remarks 662 

In this study stemming from the RISE project (a collaboration among scientists at NOAA, 663 

NASA/JPL, and several universities), we have considered some key issues in the prediction 664 

of coastal SLAs on seasonal time scales, a particularly challenging problem since seasonal 665 

forecast systems largely have not been designed with such predictions in mind. Using both 666 

deterministic and probabilistic metrics, we assessed the skill of hindcasts from various 667 

dynamical and statistical models/techniques — traditional assimilation-initialized seasonal 668 

forecast systems based on coupled dynamical models, an empirical regression-based 669 

approach (the LIM), and two statistical (linear regression) and dynamical (ECCO adjoint) 670 

post-processing techniques applied to output from the seasonal forecast models — against 671 
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monthly SLAs observed at two sample NOAA NWLON tide gauge stations in San Diego, 672 

CA and Charleston, SC. We found that the skill of some of the forecast systems cannot beat a 673 

simple “damped persistence” (univariate AR1) approach, especially for Charleston. Even 674 

fewer had deterministic or probabilistic skill greater than the LIM (multivariate AR1) 675 

approach, which suggests that for future studies, the LIM could serve as a more rigorous 676 

benchmark than damped persistence for coastal SLA seasonal forecast skill, both 677 

deterministic and probabilistic. 678 

Consistent with previous studies (Long et al. 2021; Shin and Newman 2021), SLA 679 

seasonal prediction skill was considerably better for San Diego than Charleston. There are a 680 

few possible reasons for poorer Charleston skill. There may simply be lower inherent SLA 681 

predictability in the Charleston region. For example, past studies have shown that while 682 

ENSO drives a strong and potentially predictable signal in Pacific SLA along the U.S. West 683 

coast (Amaya et al. 2022), predictable SLAs along the U.S. East Coast appear associated with 684 

Gulf Stream modulation that may have a smaller impact on the predictable monthly signal, 685 

compared to unpredictable noise processes (Shin and Newman 2021). This difference is 686 

likely exacerbated by large-scale climate model errors in the position of the Gulf Stream, due 687 

in part to model grids that are too coarse (e.g., Bryan et al., 2007), although there are also 688 

systematic errors in ENSO prediction as well (e.g., Beverley et al. 2023). Current climate 689 

model resolution may also be insufficient to entirely capture climate-related signals 690 

propagating along the coast, including Kelvin waves driven by ENSO (e.g., Amaya et al. 691 

2022) and other coastally-trapped waves (e.g., Brunner et al. 2019 and references therein; 692 

Hughes et al. 2019). Finally, inadequate initialization is also likely a contributing factor in 693 

poorly performing forecasts, especially around the Gulf Stream region (Widlansky et al. 694 

2023). For example, the CCSM4 and SPEAR Month 1 hindcasts, which were not initialized 695 

using the altimetry observations, failed to correctly represent either the (relatively large) trend 696 

along the US East Coast or the interannual component of global mean SLA (Fig. 3). Reliance 697 

of the LIM and SEAS5 on ORAS4 and ORAS5, respectively, means that their Charleston 698 

initializations are also somewhat deficient relative to San Diego (Fig. 2); since these 699 

reanalyses often give little-to-no weighting to satellite altimetry data near the coast (e.g., 700 

Balmaseda et al. 2013; Feng et al. 2023), this difference may be related to the fact that while 701 

the San Diego tide gauge SLA is correlated with a large scale North Pacific SLA pattern, 702 

Charleston is primarily correlated with SLA along the South Atlantic coast (Long et al. 703 

2023). The resolution issues extend to the verification process, where coarse-grid model 704 
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hindcasts (output at 1º grid resolution) are compared against point observations, rather than 705 

against similarly gridded observational datasets. Interestingly, the ECCO adjoint approach, 706 

which is “initialized” using a 12-month dynamical spin-up forced by surface observations, 707 

has much better Charleston skill compared to the climate models even for Month 1 hindcasts, 708 

with significant skill (even after detrending) up to about Month 6 during late spring and late 709 

fall. Further diagnosis of these issues, analyzing how inadequate initialization and model 710 

error interact with each other so that forecast systems may not take full advantage of sources 711 

of predictability, will also need to consider other US tide gauges as well. 712 

A common problem for all the hindcasts is that they do not appear to generate enough 713 

categorical “hits”, even for categories with the lowest probability thresholds. This issue is 714 

evident in individual hindcast ensembles (e.g., Fig. 4), as the ensemble spread is often 715 

insufficient relative to observed variability so the model forecasts are not entirely reliable. 716 

Note that while we do not expect climate models to predict observed SLA evolution with 717 

deterministic certainty, we do expect them to be able to produce ensemble members that can 718 

encompass what is observed to occur, so this over-confidence of the model hindcasts is likely 719 

also reflective of model error. While both post-processing approaches (downscaling and 720 

ECCO adjoint) yield some improvement for deterministic skill relative to the original 721 

hindcasts upon which they were based (albeit not uniformly across the models), neither 722 

technique appears to improve probabilistic skill and, in some cases, may reduce skill by 723 

collapsing the ensemble spread. This suggests the importance of developing post-processing 724 

and downscaling methods, whether dynamical or machine learning-based, whose ensembles 725 

can capture variability more realistically on the local scales of interest, even if much of that 726 

variability is unpredictable. 727 

In this study, we detrended observations and hindcasts using either a linear or quadratic 728 

fit to explore the externally-forced trend’s potential impact on hindcast skill, including 729 

whether different trend estimates could yield different impacts on skill. For Charleston, we 730 

found that the pronounced sea level trend increases apparent seasonal prediction skill, 731 

especially for hindcasts that are realistically initialized. Much of the hindcast reliability at 732 

Charleston also appears to correspond to a trend component. While a trend-related impact on 733 

skill also exists for San Diego, it is much less pronounced and complicated by vertical land 734 

motion over the length of the hindcast period. For both stations, detrended hindcasts 735 

generally remain more skillful than the corresponding damped persistence benchmarks, since 736 

the trend also increases apparent persistence. Note that, for the most part, we determined only 737 
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the qualitative impact of the trend, since these impacts changed when the trend was assumed 738 

to be linear or quadratic. A quantitative analysis would require estimating and removing the 739 

evolving externally-forced trend, which is complicated by the presence of internal climate 740 

variability, vertical land motion, and the apparent trend acceleration since 2011. Of course, if 741 

the assumed trend differs from the actual trend, then incorrect detrending could remove some 742 

potentially predictable component of natural seasonal-to-interannual variability. This would 743 

impact our skill estimates, including metrics of the model’s ability to capture observed 744 

marginal and conditional probability distributions (e.g., Xu et al. 2022). We also found that 745 

removal of the trend can sometimes improve skill for hindcasts with an erroneous trend 746 

component, due to inadequate initialization of a sea surface height forecast variable that does 747 

not represent the total sea level.  Our attempt to correct this issue, by using forecast output to 748 

predict month-to-month SLA changes rather than the monthly SLA values themselves, still 749 

suffers from an inability to cleanly separate the initial observed state into its trend and 750 

seasonal anomaly components, and is thus, at best, a temporary, ad hoc fix. In essence, 751 

hindcast skill assessment of U.S. coastal seasonal SLA prediction is also an externally-forced 752 

trend detection problem. 753 

This paper represents a multipronged assessment of the skill for seasonal prediction of 754 

regional sea level anomalies, involving dynamical, statistical, and hybrid methods. We have 755 

tried to provide important information to the climate prediction community about the relative 756 

strengths and limitations of various approaches, highlighting the challenges of sea level 757 

prediction at sample U.S. coastal stations, and stressing important issues to consider when 758 

assessing and comparing sea level prediction skill. Our primary conclusion is that, for the 759 

most part, the current seasonal forecasting systems may not yet be fit for the purpose of 760 

making coastal sea level predictions in the regions considered here. It is apparent that making 761 

useful predictions of coastal SLA is a hard test for seasonal forecast systems, which helps 762 

identify needs for additional improvement in both climate models and their initialization. To 763 

make progress, we propose studies aimed at the following: 764 

• Evaluating the extent to which higher model resolution, which could reduce large 765 

scale model errors such as Gulf Stream position and strength, will improve 766 

forecasts that also depend upon complex coastal geography and bathymetry. 767 

• Developing non-Boussinesq ocean models that include the global ocean volume 768 

changes, both barystatic and thermosteric, which are important to local sea level 769 
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prediction, or alternatively developing models whose output include global 770 

changes in steric volume as an additional diagnostic. 771 

• Understanding how best to initialize climate models (either Boussinesq or non-772 

Boussinesq) so that their coastal forecasts may be best used, either directly or 773 

through post-processing and downscaling. 774 

• Investigating methods to improve the reliability of climate model forecast 775 

ensemble spread (e.g., stochastic parameterization; Sardeshmukh et al. 2023).  776 

• Diagnosing drivers of model error in hindcast ensembles, especially the rapid 777 

initial development of error (including the initialization drift of the mean dynamic 778 

topography of the ocean) that degrades SLA forecast skill. 779 

Additionally, the issues discussed concerning how to post-process/downscale seasonal 780 

climate forecasts lead us to suggest studies focused on:  781 

• Evaluating how climate model forecast ensembles may be used for driving 782 

smaller-scale, limited domain ocean models, with better coastal processes 783 

including tide, wave, and ocean dynamic effects, that are all necessary for 784 

providing actionable coastal information. 785 

• Constructing forecast ensembles that can capture prediction uncertainty both at the 786 

large climate scales and at the smaller atmospheric and oceanic scales relevant to 787 

the coastal regions. 788 

• Evaluating new empirical and machine learning approaches, designed both to 789 

post-process model forecasts and to make coastal SLA seasonal predictions 790 

outright, as alternative solutions while the suggestions above are evaluated.  791 
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Data Availability Statement. 802 

All hindcast and observational datasets discussed in this paper are available for viewing 803 

and downloading at https://www.psl.noaa.gov/forecasts/SeaLevel/#RISE. 804 

 805 

Table 1 Key characteristics of the ocean model component in the three dynamical 806 

forecast systems, including the name of the forecast system, ensemble size of the seasonal 807 

hindcasts, lead time (months), the name of the ocean model component, nominal horizontal 808 

resolution, whether the system includes a global mean sea surface height component in its 809 

output, whether the system assimilates the altimetry observed sea surface height into its initial 810 

conditions, and the reference related to each of the seasonal forecast systems. 811 

 812 
Name Ensemble 

Size 
Lead 
Time 

Ocean 
Model 

Grid 
Resolution 

(deg) 

Global 
Mean Sea 

Level 

Altimetry- 
initialized? 

References 

CCSM4 10 11 POP2 1 No No Kirtman et al. 
(2014) 

SPEAR 15 11 MOM6 0.5 Partly No Delworth et al. 
(2020) 

SEAS5 25 6 NEMO 0.25 Yes Yes Johnson et al. 
(2019) 

 813 

 814 
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  815 

Figure 1. (a) An example of how superposing two uncorrelated time series onto a linear trend 816 
generates the new well-correlated time series. The original uncorrelated time series has a 817 
standard deviation of 0.9, and the superposed linear trend has a standard deviation of 0.56. 818 
The two new time series correlate 0.39. (b) Superposing different trends can reduce the 819 
correlation of two otherwise correlated time series from 0.90 to 0.67. 820 

  821 
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  822 

 823 

Figure 2. Monthly mean SLA from two tide gauge stations, (top) San Diego and (bottom) 824 

Charleston, compared with SLA values of the nearest grid point from the observationally-825 

based reanalysis datasets, AVISO, GLORYS12, ECCO, and ORAS5.  The correlation 826 

coefficient between each reanalysis and the corresponding tide gauge time series is given as 827 

numbers in parenthesis (San Diego, Charleston). Linear and quadratic least square fits to each 828 

tide gauge time series are also shown. 829 
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   830 
Figure 3. Global monthly mean SLA from satellite observations (AVISO) and 831 

observationally-based reanalyses (GLORYS12, ECCO, and ORAS5) compared to the Month 832 

1 hindcast from SEAS5, SPEAR, and CCSM4. The anomalies are relative to the climatology 833 

of 1995-2016 and relative to the global mean in January 1995. (a) Comparison of observed 834 

values with SEAS5 and SPEAR hindcasts, where the latter is corrected with its global mean 835 

steric component determined from the temperature and salinity profiles. (b) Comparison of 836 

Month 1 values from the SEAS5 and original (without global mean steric correction) SPEAR 837 

and CCSM4 hindcasts. (c) Comparison of linearly detrended ORAS5 with linearly trended 838 
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Month 1 values from the SEAS5, SPEAR, and CCSM4 hindcasts; the number in the legend 839 

indicates the correlation of each hindcast time series with ORAS5. 840 

 841 

Figure 4. Observed (gray) and predicted (red and blue) monthly SLA anomalies from August 1997 to 842 
July 1998 at San Diego (top) and Charleston (bottom). Observations (dark gray) are from the tide 843 
gauge records, and the model hindcasts were initialized by August 1, 1997 (LIM was initialized in 844 
July 1997). The red solid line is the ensemble mean forecast, and the blue solid lines/ shading 845 
indicates ensemble members/spread. Units are cm. 846 
  847 
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 848 
Figure 5. Deterministic skill measured by anomaly correlation coefficient (ACC) between the 849 

hindcasts and tide gauge observations at (left) San Diego and (right) Charleston at different lead 850 
times. The verification period is from 1995 to 2015, using hindcasts initialized in all calendar months. 851 
Gray shading shows damped persistence skill. Top row: Skill of each forecast technique for (a) San 852 
Diego and (b) Charleston. Second row: Same as (a and b) but after linear detrending of the observed 853 
tide gauge time series and from each hindcast. Third row: Same as (c and d) but using quadratic 854 
detrending. Note that trending also impacts the damped persistence time scale and skill. 855 

856 
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 857 

Figure 6. Same as Fig. 5 but using RMS skill score (RMSSS). 858 
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 860 

Figure 7. Deterministic skill measured by anomaly correlation coefficient (ACC) between the 861 
hindcasts and tidal gauge observations at San Diego at different lead times and target months. 862 
The gray dots indicate anomaly correlation values that are not significant at the 0.1 level 863 
using a two-tail student t-test. The verification period is 1995 to 2015. No detrending is 864 
performed upon either hindcasts or observations. 865 
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 867 
Figure 8. Same as Fig. 7 but for the Charleston tide gauge. 868 
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870 
Figure 9. The same as Fig. 8 but computed after linearly detrending observations and 871 

hindcasts. 872 
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 874 
Figure 10. Reliability and sharpness diagrams of each hindcast for San Diego at Month 4. 875 

The mean forecast probability is plotted against the mean observed frequency for the 876 

reliability curve, determined by averaging all hindcasts within each quintile bin category. Red 877 

is for upper tercile hindcast, and blue is for lower tercile hindcast. The annotation is the 878 

reliability value with the same color coding (note that lower values represent better 879 

reliability). Gray shading shows the uncertainty of the reliability curves based on a 880 

bootstrapping calculation. 881 
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 883 

Figure 11. Same as Fig. 10 but for Charleston. 884 
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 886 

Figure 12. The same as Fig. 11 but for reliability and sharpness calculated after the linear 887 

trend is removed from the observed tide gauge time series and each of the hindcasts. The 888 

terciles of the observations are also calculated using the detrended data. 889 

 890 
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 891 

892 
Figure 13. ROC curve of each of the hindcasts for San Diego at Month 4. Red is for the upper 893 

tercile forecast, and blue is for the lower tercile forecast. The ROC skill score (ROCS) is 894 

shown in each panel. The dashed lines in the first and second columns are the ROC curves for 895 

the multi-model mean of the hindcasts from three dynamical models and three downscaled 896 

versions, respectively. 897 
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899 
Figure 14. Same as Fig. 13 but for Charleston. 900 

  901 



42 

902 
Figure 15. The ROC skill score (ROCS) for upper and lower tercile hindcast for each 903 

prediction technique for San Diego at different lead times.  904 
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905 
Figure 16. The ROC skill score (ROCS) for upper and lower tercile hindcast for each of the 906 

prediction techniques, verified for Charleston at different lead times, determined for (left 907 

column) full fields and (right column) linearly detrended fields. 908 
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 910 

 911 

912 
Figure 17. Anomaly correlation coefficient (ACC) between the hindcasts and tidal gauge 913 

observations at San Diego and Charleston at different lead times. For each of the model 914 

hindcasts, the ACC of the delta corrected hindcast is compared with the skill of the original 915 

hindcast. See text for details of the procedure of creating the delta corrected hindcast.  916 

 917 

 918 
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