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Abstract

It has been recently demonstrated that model output statistics (MOS) computed

from a long retrospective dataset of ensemble ’re-forecasts’ from a single model can

significantly improve the skill of probabilistic week two forecasts (with the same model).

In this study we extend the technique to a multi-model re-forecast dataset consisting of

forecasts from ECMWF and NCEP global models. Even though the ECMWF model

is more advanced than the version of the NCEP model used (it has more the double

the horizontal resolution and is about five years newer), the forecasts produced by

the multi-model MOS technique are more skillful than those produced by the MOS

technique applied to either the NCEP or ECMWF forecasts alone.

These results demonstrate that the MOS re-forecast approach yields benefits for

week two forecasts which are just as large for high-resolution state-of-the-art models

as they are for relatively low-resolution, out-of-date models. Furthermore, operational

forecast centers can benefit by sharing both retrospective ’re-forecast’ datasets and

real-time forecasts.
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1. Introduction

Operational weather prediction centers strive to improve forecasts by continually im-

proving weather forecast models, and the analyses used to initialize those models. In a

recent study, Hamill et al. (2004) investigated an alternative approach to improving fore-

casts, namely using the statistics of past forecast errors to correct errors in independent

forecasts. They used a dataset of retrospective ensemble forecasts (or ’re-forecasts’) with

a 1998 version of the operational global forecast model from the National Centers for En-

vironmental Prediction (NCEP, part of the U.S. National Weather Service). Probabilistic

forecasts of surface temperature and precipitation in week two (days 8-14) were not skillful

relative to climatology when computed directly from the model output, but were more skill-

ful than the operationally produced forecasts from NCEP’s Climate Prediction Center when

computed using forecast-error statistics from the re-forecast dataset.

Ensembles of forecasts with a single model suffer from a deficiency in spread partly be-

cause they do not represent the error in the forecast model itself. This causes probabilistic

forecasts derived from such ensembles to be overconfident. Statistical post-processing using

re-forecast datasets can ameliorate this problem to some extent, yielding reliable probabilities

(e.g. Hamill et al. 2004). However, the use of multi-model ensembles (ensembles consisting

of forecasts from different models, perhaps initialized from different analyses) have also been

shown to significantly increase the skill of probabilistic forecasts (Krishnamurti and coau-

thors 1999; Palmer and coauthors 2004; Rajagopalan et al. 2002; Mylne et al. 2002), even

without statistical post-processing. In this note, we examine whether the results of Hamill
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et al. (2004) can be improved upon if the re-forecast dataset used to statistically correct

the forecasts consists of more than one model. Here we combine the re-forecast dataset

described in Hamill et al. (2005) using a 1998 version of the NCEP Global Forecast Sys-

tem (GFS) model, with a re-forecast dataset generated at the European Center for Medium

Range Forecasts (ECMWF) to support monthly forecasting Vitart (2004). The ECMWF

forecasts are run at roughly 1◦grid spacing, as compared to 2.5◦grid spacing used for the

NCEP 1998 model forecasts.

In this note we address two questions. The first concerns whether he large gains in skill

reported by Hamill et al. (2004) were a consequence of the fact that the forecast model was

run at relatively low-resolution and is now nearly 6 years behind the state-of-the art. In other

words, do the benefits of statistically correcting forecasts using re-forecasts datasets found in

that study also apply to newer, higher-resolution models? Secondly, we investigate whether

the methods described in Hamill et al. (2004) can be applied to multi-model ensembles.

Specifically, we seek to address the question of whether statistically corrected multi-model

forecasts are more skillful than the forecasts generated from the component models (using

the statistics from the component re-forecast datasets).
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2. Datasets and methodology.

a. The Analyses

Forecasts for 850 hPa temperature are presented in this note. These forecasts have been

verified using both the NCEP/NCAR Reanalysis (Kistler and Coauthors 2001) and the ERA-

40 reanalysis (Uppala and Coauthors 2005). Both of these analyses are on a 2.5◦ grid, and

only those points poleward of 20◦N are included. Since the verification statistics computed

with the NCEP/NCAR and ERA-40 analyses are so similar, all of the results described here

have been computed using the ERA-40 reanalyses unless otherwise noted.

b. The Forecasts

A re-forecast dataset was created at the NOAA Climate Diagnostics Center (CDC), using

a T62 resolution (roughly 2.5◦grid spacing) version of NCEP’s Global Forecasting System

(GFS) model, which was operational until January 1998. This model was run with 28 vertical

sigma levels. A 15-member ensemble run out to 15 days lead time is available for every day

from 1979 to the present, starting from 0000 UTC initial conditions. The ensemble initial

conditions consisted of a control initialized with the NCEP-NCAR reanalysis (Kistler and

Coauthors 2001) and a set of 7 bred pairs of initial conditions (Toth and Kalnay 1997) ,

centered each day on the reanalysis initial condition. The breeding method and the forecast

model are the same as that used operationally at NCEP in January, 1998. Sea surface

conditions were specified from the NCEP-NCAR reanalysis, and were held fixed to their
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initial values throughout the forecast. Further details describing this dataset are available

in Hamill et al. (2004) and Hamill et al. (2005).

An independent set of re-forecasts has been generated at ECMWF to support operational

monthly forecasting (Vitart 2004). The atmospheric component of the forecast model is a

T159 (roughly 1◦grid) version of the ECMWF Integrated Forecast System (IFS) with 40 levels

in the vertical. The oceanic component is the Hamburg Ocean Primitive Equation Model

(HOPE). Atmospheric initial conditions were taken from the ERA-40 reanalysis, and ocean

conditions were taken from the ocean data assimilation system used to produce seasonal

forecasts at ECMWF. A five-member ensemble was run out to 32 days once every two weeks

for a 12 year period from March 27, 1990 to June 18, 2002. Initial atmospheric perturbations

were generated using the same singular vector technique used in ECMWF operations (Buizza

and Palmer 1995). Further details describing the ECMWF monthly forecasting system can

be found in Vitart (2004).

A combined re-forecast dataset was created by sub-sampling five members from the

NCEP/CDC re-forecasts for just those dates in December, January and February for which

the ECMWF forecasts were available (a total of 84). Only week two (8-14 day average)

forecast means for 850 hPa temperature in the Northern Hemisphere poleward of 20◦N were

included.
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c. Methodology

Three category probability forecasts for 850hPa temperature in week two were produced

for the Northern Hemisphere poleward of 20◦N . The three categories are the lower, middle

and upper tercile of the climatological distribution of analyzed anomalies, so that the cli-

matological forecast for each category is always 33 percent. The climatological distribution

is defined for all winter (December - February) seasons from 1971-2000. The climatological

mean for each day is computed by smoothing the 30-year mean analyses for each calendar

day with a 31 day running mean. The terciles of the climatological distribution are calculated

using the analyzed anomalies over a 31 day window centered on each calendar day. Further

details may be found in Hamill et al. (2004).

Tercile probability forecasts are generated from the raw 5-member ensemble output for

each model by simply counting the number of members that fall into each category at each

grid point, and then dividing that number by 5. The NCEP 15-member ensemble was

sub-sampled by taking the control and the first two (out of seven) positive and negative per-

turbations generated by the breeding method (Toth and Kalnay 1997). These uncorrected,

or ’raw’ ensemble probabilities are compared to probabilities computed using a technique

called logistic regression (Wilks 1995), which is described in detail in Hamill et al. (2004).

In short, as implemented here, the logistic regression predicts the tercile probabilities given

the ensemble mean forecast anomaly (relative to the observed climatology). As discussed in

Hamill et al. (2004), we have found adding other predictors, such as ensemble spread, into the

logistic regression does not improve forecast skill. Software from the Numerical Algorithms
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Group (NAG - http://www.nag.co.uk) was used to compute the regression coefficients

(NAG library routine G02GBF). These coefficients are computed at each grid point using

cross-validation, that is for each of the 84 forecast times, the other 83 forecast/verification

pairs are used to compute the regression coefficients. Since the forecasts are separated by two

weeks, the correlation between adjacent forecasts is quite small and each forecast is essen-

tially independent of the others. Probabilities are computed using logistic regression using

each model’s ensemble mean anomaly separately, and then a multi-model forecast probability

is produced by using a combined ECMWF/NCEP ensemble mean anomaly as the predictor

in the logistic regression. The combined ensemble mean anomaly is computed using

Fcombined = b0 + bNCEPFNCEP + bECMWFFECMWF , (1)

where the FNCEP is the NCEP ensemble mean, FECMWF is the ECMWF ensemble mean,

Fcombined is the multi-model ensemble mean, bNCEP is the weight given to the NCEP ensemble

mean, bECMWF is the weight given to the ECMWF ensemble mean and b0 is a constant term.

The coefficients (b0, bNCEP , bECMWF ) are estimated at each Northern Hemisphere grid point

using an iterative least-squares regression algorithm (NAG library routine G02GAF).

Instead of combining the ensemble means and using the result as a predictor in the logistic

regression, a multi-model forecast can be computed by simply using each ensemble mean as

a separate predictor in the logistic regression. We have found that forecasts obtained with

a two-predictor logistic regression are slightly less skillful, so only results using the two-step

procedure (using the combined ensemble mean as a single predictor in the logistic regression)
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are presented here.

3. Results

Figure 1 is a reliability diagram summarizing the skill of the raw, uncorrected week two

tercile probability forecasts for each model in the Northern Hemisphere poleward of 20◦N .

For both the NCEP and ECMWF models, the reliability of the forecasts is poor (the forecasts

are overconfident) and the Ranked Probability Skill Score (RPSS, see Wilks (1995)) is near

zero, indicating no skill relative to the climatological forecast of 33 percent in each category.

Richardson (2001) has show that the Brier Skill Score (BSS, which is the same as the RPSS

for forecasts of a single category) depends on ensemble size according to

B∞ =
BM + M−1

1 + M−1
, (2)

where BM is the BSS for an ensemble of size M and B∞is the BSS for an infinite ensemble.

This equation assumes the ensemble prediction system is perfect, i.e. the verifying analysis

is statistically indistinguishable from a randomly chosen ensemble member. According to

this formula, if a five-member ensemble with a perfect model has no skill (BM = 0) then

an infinite ensemble should have a BSS of 0.166. However, we have found that the RPSS of

the NCEP forecast is still negative for an ensemble size of 15 (the total number of ensemble

members available). This suggests that model error is primarily responsible for the low skill

of the NCEP model forecasts, not the small ensemble size used to generate the probabilities.
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Although we cannot test the sensitivity of the RPSS to ensemble size with the ECMWF

model (since the re-forecasts were only run with five members), the fact that the reliability

diagrams shown in Figure 1 are so similar suggests that the same holds true for the ECMWF

forecasts. The lack of reliability shown in Figure 1 is a consequence of the spread deficiency

in both models - on average the ensemble spread is nearly a factor of two smaller than the

ensemble mean error (not shown).

Applying a logistic regression to the ensemble means produces forecasts which are more

reliable and have higher skill for both ensembles (Figure 2). The corrected ECMWF model

forecasts are significantly more skillful than the corrected NCEP model forecasts (RPSS

of 0.155 for ECMWF versus 0.113 for NCEP) . The relative improvement in the ECMWF

forecasts is nearly the same as the NCEP forecasts, demonstrating that the value of having

a re-forecast dataset is just as large for the ECMWF model as it was for the NCEP model.

This is despite the fact that the ECMWF model has the benefit of twice the resolution

and five extra years of model development. The improvement in skill is limited by the small

sample size - if all 25 years of forecasts available for the NCEP model are used to compute the

logistic regression, the RPSS increases to 0.15. The multi-model forecast, using the combined

ensemble mean in the logistic regression, produces a forecasts with an average RPSS of 0.17

(Figure 3), about a 10 percent improvement over the corrected ECMWF forecast alone. The

fact that the multi-model ensemble forecast is more skillful than the ECMWF forecast, even

though the ECMWF forecast is, on average, superior to the NCEP forecast, is a consequence

of the fact that there are places where the NCEP model is consistently more skillful than the
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ECMWF model (Krishnamurty and coauthors 2000). This is reflected in the weights used

to combine the two ensemble means (Figure 4). Although the ECMWF model receives more

weight on average, there are regions where the NCEP model receives a weight of greater than

0.5 (the red regions in the left panel of Figure 4). In other words, the NCEP model, though

inferior on average to the ECMWF model, supplies independent information that can be

used to improve upon the ECMWF forecast. This is obviously only possible if a re-forecast

dataset is available for both models.

All of the results discussed in this section have been computed using the ERA-40 reanal-

ysis as the verifying analysis. The results are not substantively changed if the NCEP-NCAR

reanalysis is used instead (not shown).

4. Discussion

The study of Hamill et al. (2004) has been extended to include more than one forecast

model. The results show that the benefits of re-forecasts apply equally to older, lower

resolution forecasts systems as they do to higher resolution state-of-the-art ones. In this

case, logistic regression was used to combine the NCEP and ECMWF week two forecasts.

The resulting multi-model forecast was more skillful than the statistically corrected ECMWF

forecast, which was run at more than twice the horizontal resolution as the other model, a

1998 version of the NCEP global forecast model. These results clearly demonstrate that all

operational centers can benefit by sharing both re-forecast datasets and real-time forecasts.

This is true even if the models run by the various centers differ substantially in resolution, as
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long as they some skill and provide independent information to the statistical scheme used to

combine the forecasts. For week two tercile probability forecasts of 850 hPa temperature, the

benefits of multi-model ensembles cannot be realized unless all the models have corresponding

re-forecast datasets with which to estimate regression equations to combine (and calibrate)

the forecasts.
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Figure Captions

Figure 1: Reliability diagrams for week two tercile probability forecasts of 850

hPa temperature. 84 forecasts during December-February 1990 to 2002 are

used, and forecasts are evaluated of the Northern Hemisphere poleward of

20◦N using the ERA-40 reanalysis for verification. The reliability curve shown

is for both upper and lower tercile probability forecasts. Inset histograms

indicate frequency with which extreme tercile probabilities were issued. (A)

Forecasts from the five member ECMWF model ensemble, (B) forecasts from

the five member NCEP model ensemble. 15

Figure 2: As in Figure 1, but for forecasts corrected with a logistic regression. 16

Figure 3: As in Figure 1, but for multi-model ensemble. The NCEP and ECMWF

forecast ensemble means are combined using linear regression, and then the

combined ensemble mean is used to predict tercile probabilities using logistic

regression. The combined ensemble is more skillful than the logistic regression

correction applied to either the ECMWF or NCEP models alone (Figure 2). 17

Figure 4: A map of the weights used to combine the ECMWF and NCEP en-

semble mean forecasts. These maps correspond to bNCEP and bECMWF in

equation 1. The mean term (b0) is not shown. 18
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Figure 1: Reliability diagrams for week two tercile probability forecasts of 850 hPa tem-
perature. 84 forecasts during December-February 1990 to 2002 are used, and forecasts are
evaluated of the Northern Hemisphere poleward of 20◦N using the ERA-40 reanalysis for
verification. The reliability curve shown is for both upper and lower tercile probability fore-
casts. Inset histograms indicate frequency with which extreme tercile probabilities were
issued. (A) Forecasts from the five member ECMWF model ensemble, (B) forecasts from
the five member NCEP model ensemble. 15



Figure 2: As in Figure 1, but for forecasts corrected with a logistic regression.
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Figure 3: As in Figure 1, but for multi-model ensemble. The NCEP and ECMWF forecast
ensemble means are combined using linear regression, and then the combined ensemble mean
is used to predict tercile probabilities using logistic regression. The combined ensemble is
more skillful than the logistic regression correction applied to either the ECMWF or NCEP
models alone (Figure 2).

17



Figure 4: A map of the weights used to combine the ECMWF and NCEP ensemble mean
forecasts. These maps correspond to bNCEP and bECMWF in equation 1. The mean term (b0)
is not shown.
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