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ABSTRACT

Statistical considerations suggest that 1) even for a perfect ensemble (one in which all sources of forecast
error are sampled correctly) there need not be a high correlation between spread and skill, 2) the correlation
between spread and skill should be larger where the day-to-day variability of spread is large, and 3) the spread
is likely to be most useful as a predictor of skill when it is ‘‘extreme,’’ that is, when it is either very large or
very small compared to its climatological mean value. The authors investigate the relationship between spread
and skill in an operational setting by analyzing ensemble predictions produced by the National Centers for
Environmental Prediction. The geographical dependence of the spread–skill relationship is found to be related
to the geographical dependence of day-to-day variability of spread. Dynamical mechanisms for spread variability
are investigated using a linear quasigeostrophic model. Problems associated with the sample size needed to
define what constitutes an extreme value of spread at a given location are discussed.

1. Introduction

In general, the mean of an ensemble of forecasts will,
on average, have a smaller error than the mean error of
any of the individual forecasts comprising the ensemble
(Leith 1974; Murphy 1988). Perhaps the simplest, and
most widely used, method of utilizing an ensemble fore-
cast is to treat the ensemble mean as a single forecast,
representing the best available estimate of the future
state of the atmosphere. As Leith (1974) pointed out,
much, but not all, of the benefit realized by ensemble
averaging can be achieved using a single forecast in
conjunction with statistical correction techniques that
utilize previous forecast verifications. However, an en-
semble forecast provides an estimate of the forecast
probability distribution of model variables, given an es-
timate of the probability distribution of analysis errors.
Assuming that the forecast probability distribution is
unimodal, variations in the width of the distribution
from forecast to forecast may be related to the skill of
the mean. The simplest measure of the width of the
forecast probability distribution is the second moment
of the ensemble, or the ensemble spread. Using this
information, the utility of the ensemble mean as a fore-
cast product can be significantly enhanced.

The utility of ensemble spread as a predictor of en-
semble mean skill has traditionally been measured in
terms of a linear correlation. In general, using opera-
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tional forecast models, the correlation between spread
and skill has been found to be positive for forecast lead
times of less than a week or so (Kalnay and Dalcher
1987; Murphy 1988; Buizza 1997). Even in idealized
‘‘perfect model’’ experiments, in which the forecast
model has no systematic biases, the correlation between
spread and skill has been somewhat disappointing, gen-
erally less than about 0.5 (Barker 1991). This can be
explained using a simple stochastic model of the spread–
skill relationship used by Houtekamer (1993), based
upon the statistical model of forecast error proposed by
Kruizinga and Kok (1988). At a given grid point, it is
assumed that the spread is a random variable with a
lognormal distribution, that is,

lnS 5 N(lnSM, b), (1)

where SM is the mean value of spread, b is the standard
deviation of lnS, and N(a, g) denotes a random number
drawn from a Gaussian distribution with a mean of a
and standard deviation g. The particular distribution
chosen for S is not important; a lognormal distribution
was chosen because it permits a simple analytical re-
lationship for spread–skill correlation to be derived. If
the ensemble forecast system is perfect, that is, the un-
derlying distribution of analysis and model error is
known and correctly sampled, and if the probability
distribution of ensemble mean error E is Gaussian,1 then
E is completely determined by S. Under these assump-
tions E 5 N(0, S), and the correlation between spread

1 Strictly speaking, the ensemble mean error E need only be Gauss-
ian after a suitable transformation.
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FIG. 1. Correlation of S and |E| as a function of b, for the ideal-
ized statistical model given by (1) and E 5 N(0, S).

FIG. 2. Schematic Gaussian forecast error probability distributions.
The area enclosed by the shaded (hatched) areas represents the cu-
mulative probability that the forecast error will be among the largest
(smallest) 20% of all cases ever observed. Here, (A) represents the
climatological distribution of forecast error (for which the standard
deviation is SM). Also, (B) represents a situation in which the en-
semble spread (and hence the width of the forecast error distribution
in a perfect ensemble) is 60% of the climatological mean value (SM).
Finally, (C) represents a case in which the ensemble spread is 1.5
times the climatological mean value.

and skill (measured by |E|) may be expressed analyti-
cally [see Eq. (33) of Houtekamer 1993]. Figure 1 shows
the correlation of S and |E| as a function of b, which
measures the temporal variability of spread at the grid
point under consideration. When b 5 0, the spread is
constant, and the error is a random draw from a fixed
distribution, so the correlation must be zero. As the
temporal variability of spread increases, so does the
correlation, asymptoting to a value of about 0.75 for
large b. This simple example illustrates that even for a
perfect ensemble, the correlation between spread and
skill need not be large, and the magnitude of the cor-
relation depends upon the day-to-day variability of
spread.

Using contingency tables, Houtekamer (1993) also
showed that the spread has the most predictive value
when it is ‘‘extreme,’’ that is, when it is very large or
small compared to its mean value. This can be under-
stood with the aid of the schematic probability distri-
butions shown in Fig. 2. The area enclosed by the
hatched and shaded areas represent the cumulative prob-
ability that the forecast error will be among the largest
(shaded) or smallest (hatched) 20% of all cases ever
observed. The schematic Gaussian in Fig. 2a represents
the climatological distribution of forecast error (for
which the standard deviation is SM), so the shaded and
hatched areas each represent 20% of all observed cases.
Figure 2b (2c) represents situations in which the en-
semble spread is small (large) compared with its cli-
matological mean value. For the small (large) spread
case, the probability that the forecast error will be
among the largest 20% observed is 3% (39%). Con-
versely, for the small (large) spread case, the probability
that the forecast error will be among the smallest 20%
observed is 32% (13%). Essentially, the predictability

of skill depends upon how much the probability distri-
bution of forecast error deviates from the climatological
distribution. Thus, the more the spread departs from its
climatological mean value, the more useful it is as a
predictor of skill. When the spread happens to be close
to the climatological mean value, then it has very little
predictive value, since the forecast error is then essen-
tially just a random draw from the climatological dis-
tribution. Therefore, in order to optimally exploit the
relationship between spread and skill, it may be crucial
to know the underlying climatological distribution of
spread for a given ensemble configuration.

In this study, we examine output from operational
ensemble predictions produced at the National Centers
for Environmental Prediction (NCEP) to see if the re-
lationship between spread and skill conforms with that
expected from the simple statistical considerations out-
lined above. We are particularly interested in under-
standing the relationship between the day-to-day vari-
ability in ensemble spread and the geographical depen-
dence of skill predictability in the operational system.
Section 2 describes the dataset and analysis methods
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FIG. 3. Gridpoint filter weights for Gaussian spectral filter used to
smooth S and E, for a selected point over North America. Contour
interval is 1.8 3 1023.

used. In section 3 we present results for two winters of
operational predictions. A strong relationship is found
between the day-to-day variability of spread and the
geographical dependence of spread–skill correlation.
Contingency tables of spread and error confirm that
spread is only useful as a predictor of skill when it is
extreme or very different from its mean value. Large
differences are observed in the geographical dependence
of the spread-skill relationship between the two winters
studied, and these differences appear to be related to
interannual variations in the geographical dependence
of spread variability. In order to overcome problems in
interpretation associated with the short data record of
operational ensemble predictions, in section 4 we utilize
an idealized model of spread variability based upon a
linear quasigeostrophic model. The idealized model is
used to estimate the climatological-mean geographical
dependence of skill predictability and to understand the
dynamical mechanisms responsible for this geographi-
cal dependence. Section 5 summarizes the results and
their implications for operational skill prediction.

2. Datasets and analysis procedure

Gridded 250-hPa streamfunction data from the op-
erational ensemble prediction system at NCEP are an-
alyzed. Forecasts verifying during the periods 15 No-
vember 1995 to 15 March 1996 and 15 November 1996
to 15 March 1997 are used.2 Details regarding the im-
plementation of ensemble prediction at NCEP are avail-
able in Toth and Kalnay (1993). Briefly, the NCEP en-
semble consists of 12 members initialized at 0000 UTC
(one high-resolution run, one low-resolution control,
and 10 perturbations of the low-resolution control) and
five members initialized at 1200 UTC (a control run and
four perturbations of the control). The five runs from
1200 UTC are included to yield an ensemble size of 17,
although they are not weighted to account for the fact
that they are 12 h older than the members initialized at
0000 UTC. The spatial resolution of the NCEP ensemble
members is T62L18, except the 0000 UTC high-reso-
lution run (which is T126L18 for the first 7 days of
integration and T62L18 thereafter) and the 12 UTC con-
trol (which is T126L18 for the first 3 days of integration
and T62L18 thereafter). The NCEP data are spectrally
truncated to T35 resolution and output to a 2.58 lat–
long grid. NCEP–NCAR (National Center for Atmo-
spheric Research) reanalyses (Kalnay et al. 1996) are
used for verification.

The ensemble mean error is defined as a root-mean-
square (rms) distance between the analyzed and forecast
fields, that is,

E(l, f ) 5 [(ca(l, f ) 2 c(l, f ))2]1/2, (2)

2 Operational NCEP ensemble forecasts have been archived at the
NOAA Climate Diagnostic Center since 1 November 1996 and are
available from the authors upon request.

where
N1

c (l, f) 5 c (3)O jN j51

is the ensemble average of N members and ca is the
verifying analysis. The spread is defined to be the av-
erage rms distance between the ensemble members and
the ensemble mean, that is,

1/2N1
2S(l, f) 5 [c (l, f) 2 c (l, f)] . (4)O j5 6N j51

Several investigators have used the anomaly corre-
lation as a measure of spread and skill (Wobus and
Kalnay 1995; Buizza 1997). We have chosen an rms
definition of spread and skill for two reasons. First, since
we will find it useful later on to interpret the day-to-
day variability of spread in terms of the day-to-day vari-
ability of the ‘‘instability’’ of the atmosphere (that is,
the day-to-day variability of the rate of growth of small
perturbations), it is convenient to use a measure of
spread that is quadratic and can be used as a measure
of perturbation growth. Second, as noted by Arpe et al.
(1985), Branstator (1986), Wobus and Kalnay (1995),
and others, anomaly correlation is positively correlated
with anomaly amplitude. Thus, as pointed out by Palmer
and Tibaldi (1988), correlations between spread and
skill using anomaly correlation may arise, in part, be-
cause spread and skill are mutually correlated with the
magnitude of the forecast anomaly.

The relationship between error and spread is usually
defined in terms of a spatial average, either for an entire
hemisphere (Buizza 1997) or for specific geographical
regions within a hemisphere (Wobus and Kalnay 1995).
Rather than defining specific regions, we instead smooth
both error and spread using a Gaussian spectral filter
(Sardeshmukh and Hoskins 1984) of the form exp[2(n/
12)2], where n is the total wavenumber in spherical
harmonic space. This is equivalent to averaging E and
S over a circular region with a radius of about 1000 km.
The geographical distribution of the filter weights in
gridpoint space for a point centered over North America
is shown in Fig. 3.
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FIG. 4. Hemispheric mean values of spread/error correlation (solid)
and b (dotted) as a function of forecast lead time. Average is com-
puted for all grid points poleward of 208N.

TABLE 1. Contingency table of spread and error for 5-day forecasts.
The entries in the table are the joint probability of obtaining the error
and spread values in the indicated quintile. The columns are spread
quintiles and the rows are error quintiles.

0%–
20%

20%–
40%

40%–
60%

60%–
80%

80%–
100%

0%–20%
20%–40%
40%–60%
60%–80%
80%–100%

0.35
0.23
0.18
0.15
0.09

0.24
0.23
0.21
0.18
0.14

0.19
0.22
0.22
0.20
0.17

0.14
0.19
0.21
0.24
0.23

0.09
0.14
0.18
0.23
0.36

TABLE 2. Joint probability that spread and error are in the top
quintile (i.e., in the top 20% of all values ever realized) as a function
of b for the stochastic model given by (1) and E 5 N(0, S).

b Probability

0.02
0.1
0.2
0.26
0.3
0.4
0.5

0.21
0.26
0.33
0.36
0.38
0.43
0.48

0.6
0.7
0.8
0.9
1.0
5.0

0.52
0.55
0.58
0.61
0.63
0.89

3. Spread/skill relationships in the NCEP
operational ensemble

Figure 4 shows some hemispheric measures of the
relationship between spread and error averaged over
both seasons (comprising 203 forecasts). For brevity,
we present results for the Northern Hemsiphere (pole-
ward of 208). Since the NCEP ensemble only attempts
to sample analysis error, the relationship between spread
and error is expected to be weaker in the summer hemi-
sphere and in the Tropics, where model errors are ex-
pected to be relatively more important. The spread/error
correlation is computed as a spatial average of the tem-
poral correlations at each grid point. The parameter b
is a measure of the day-to-day variability of spread and
is simply the Northern Hemisphere average of the stan-
dard deviation of lnS at each grid point.

The correlation between spread and skill in the NCEP
ensemble peaks at a value of about 0.3 at day 5, and
decreases to about 0.16 at day 10. Parameter b also
peaks at about day 5 and decreases thereafter. Both b
and spread/error correlation must decrease to zero at
long forecast ranges, since the ensemble distribution
approaches the climatological distribution of the model,
which does not change from day to day. When the fore-
cast distribution (and hence the spread) does not change
from day to day (the b 5 0 case shown in Fig. 1), the
forecast error is simply a random draw from a fixed
distribution.

For short forecast lead times, there is significant day-
to-day variability of spread in the NCEP ensemble, but
the correlation between spread and skill is low. In a
perfect ensemble system, spread variability, and hence
spread/error correlations, can arise from one of two
sources: 1) day-to-day variations in analysis error am-
plitude, and 2) day-to-day variations in the growth rate
of initial perturbations associated with variations in at-

mospheric instability. For very short forecast times, the
former is likely to dominate, while the latter may dom-
inate for longer forecast times. Figure 4 shows that al-
though the ‘‘breeding method’’ (Toth and Kalnay 1993)
used to generate initial perturbations for the NCEP en-
semble does yield perturbations whose amplitude varies
from day to day, these variations are not well correlated
with day-to-day variations of short-range forecast error.
Therefore, it is likely that the bred perturbations are not
accurately sampling day-to-day variations in analysis
error, and spread/error correlations in the NCEP ensem-
ble are primarily associated with day-to-day variations
in atmospheric instability. Since this mechanism cannot
produce spread variability for short forecast times, and
for long forecast times the spread-skill correlation must
approach zero, the correlation between spread and skill
must peak in the medium range.

Table 1 is a contingency table of E and S for 5-day
forecasts, the forecast range for which the relationship
between E and S is strongest. The entries in the table
are the joint probability of obtaining the error and spread
values in the indicated quintile. If there were no rela-
tionship between E and S, that is, if the correlation were
zero, all entries in the table would be 0.2. If there were
a perfect linear relationship, that is, if the correlation
were unity, all the diagonal entries would be one and
the off-diagonals would be zero. Most of the entries in
the table are not very different from 0.2, except at the



3296 VOLUME 126M O N T H L Y W E A T H E R R E V I E W

FIG. 5. Scatterplot of spread/error correlation versus b for 5-day
forecasts, using all grid points poleward of 208N.

FIG. 6. Maps of b and spread/error correlation for 213 5-day forecasts made during two winter seasons. Contour interval for b is 0.01,
with values greater than 0.28 shaded. Contour interval for correlation is 0.04 with values greater than 0.36 shaded. Negative contours are
dashed, and the zero contour is thicker.

corners. For example, if the spread is in the lowest quin-
tile, there is a 3.5 times higher probability of the error
is being in the lowest, rather than the highest, quintile.
Therefore, as expected from simple statistical consid-
erations, spread is much more useful as a predictor of
skill when it is extreme. From this table, an optimist
may conclude that the spread is a much better predictor
of skill, when it is extreme, than the low linear corre-
lations shown in Fig. 4 would suggest. However, a pes-
simist may also conclude that more than half the time,

the spread is practically useless as a predictor of skill.
Clearly, in order to maximize the practical utility of
spread as a skill predictor, one must know the underlying
climatological distribution of spread for a given ensem-
ble forecasting system, so that what constitutes an ex-
treme value of spread at a given location can be rec-
ognized. Using the simple stochastic model described
in the introduction, contingency tables like that shown
in Table 1 can be created for different values of the b
parameter. Table 2 (which is similar to Table 4 of Hou-
tekamer 1993) shows the probability that the forecast
error is in the top quintile given that the spread is in
the top quintile, as a function of b for the stochastic
model. The deviation of the probability from 0.2 is a
measure of the ability of the spread to identify bad fore-
casts. As the spread variability (measured by b) in-
creases, so does the probability that forecast will be bad
if the spread is large. This suggests that operational skill
prediction using ensemble spread will be most useful
in those geographical regions where the spread vari-
ability is large.

In accordance with the simple stochastic model,
spread/error correlations in the NCEP ensemble are
higher where the day-to-day variability of spread is larg-
er. This is illustrated by Fig. 5, which is a scatterplot
of spread/error correlation and b for 5-day forecasts,
using all Northern Hemisphere grid points. The corre-
lation is 0.63, so that about 36% of the spatial variation
in spread/error correlation can be accounted for by spa-
tial variations of b. Maps of spread/error correlation and
b for 5-day forecasts are shown in Fig. 6. Both fields
are maximum near Alaska, with a secondary maximum
over Europe. There is a general tendency for spread/
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FIG. 7. As in Fig. 6, but for the two winter seasons separately.

error correlations and b to increase with latitude. How-
ever, as Fig. 7 shows, there is considerable interannual
variability in both fields. Given the short data record,
and the large degree of interannual variability in the
geographical patterns of spread/error correlation and b,
it is difficult to assess what regions possess the highest
skill predictability. The short data record and limited
vertical resolution of the available ensemble output also
make if difficult to diagnose the dynamical mechanisms
responsible for the geographical dependence of skill pre-
dictability. A long record of ensemble forecasts with a
fixed ensemble configuration is needed to address these
issues. Since such a dataset is not likely to be available
in the near future, we have designed an idealized model

of spread variability for this purpose. In the next section,
we use this model to estimate the climatological mean
patterns of spread variability and to investigate the dy-
namical processes responsible for that variability.

4. Understanding spread variability with a linear
quasigeostrophic model

The dynamical model used in this study is the so-
called Lorenz-P model (Lorenz 1960). The level of ap-
proximation is consistent with quasigeostrophy, but the
retention of the spherical metric terms and the full vari-
ation of the Coriolis parameter distinguish it from the
traditional b-plane quasigeostophic (QG) model and the
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FIG. 8. Maps of b (computed using 300-hPa streamfunction) for two winter seasons, simulated at 3 days with the five-level linear QG
model. Contour interval is 0.01, with values greater than 0.28 shaded.

spherical extension of the b-plane QG model used by
Marshall and Molteni (1993). For reference, the verti-
cally discretized equations and parameter settings are
given in the appendix. For the results presented here,
five vertical levels and a horizontal resolution of T31
are used.

a. Experimental design

We assume that day-to-day variability of spread in
the NCEP ensemble is associated primarily with day-
to-day variability in the growth of small perturbations
and that day-to-day variations in the analysis error dis-
tribution are either unimportant or, more likely, not ac-
curately sampled. In addition, we assume that the day-
to-day variability of spread can be modeled using linear
perturbation dynamics, at least for short forecast ranges.
In other words, the evolution of spread in the NCEP
ensemble can be simulated by a tangent linear model,
linearized about the control forecast. This is supported
by the fact that maps of b computed from the NCEP
ensemble for 3-day forecasts (at which point the per-
turbation dynamics is just entering the nonlinear regime)
look qualitatively similar to the 5-day forecast result
shown in Fig. 6. Finally, we assume that linearizing
about short segments of analyzed fields will yield results
similar to linearizing about short global model forecast
trajectories. This assumption would only be violated if
the patterns of spread variability shown in Figs. 6 and
7 were somehow related to the evolution of errors with-
in the control forecast and not to those aspects of the
control forecast trajectory that were actually observed.

The five-level QG model is linearized about 3-day
segments of 6-hourly NCEP reanalyses for 21 ‘‘winters’’

(the 121-day period starting on 15 November). Only the
rotational wind field is needed for the basic state in the
QG model. The 6-hourly analyses are interpolated lin-
early in time to the model time step (3 h). One hundred
and twenty-one ensemble integrations, all starting at
0000 UTC, are performed for each winter, with an en-
semble size of 10. The object of these integrations is to
compute the 3-day forecast covariance matrix (C3), giv-
en the covariance matrix of analysis error (C0). The
ensemble spread is given by the diagonal elements of
C3. If G is the 3-day propagator of the tangent linear
model, then C3 5 GC0GT. In principle, the matrix G,
and hence C3, could be computed directly, but for a
model of this size a Monte Carlo approach to estimating
C3 is much more efficient. Since we are computing
spread variability associated with day-to-day variations
in the growth of small perturbations, that is, day-to-day
variations in G, C0 is held fixed.

b. QG model results

Analysis error covariance is notoriously difficult to
estimate accurately (Lonnberg and Hollingsworth
1986). Here we simply assume homogenous, isotropic
streamfunction error statistics (C0 5 I). The resulting
maps of b for the 1995–96 and 1996–97 winter seasons
are shown in Fig. 8. Comparing Fig. 8 with Fig. 7, we
see that the linear QG model with homogeneous, iso-
tropic error statistics can simulate the geographical dis-
tribution of spread variability in the operational NCEP
ensemble, at least qualitatively. We have used the dif-
ferences between NCEP and European Centre for Me-
dium-Range Weather Forecasts (ECMWF) reanalyses
for the period 1979–93 to estimate C0, with qualitatively
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FIG. 9. Twenty-one winter mean 300-hPa streamfunction spread (S) and standard deviation of lnS (b), estimated from 3-day integrations
of the five-level linear QG model. Here, S is normalized by the mean amplitude of the initial perturbations used in the ensemble integrations.
Contour interval for b is 0.01, with values greater than 0.28 shaded. Contour interval for normalized S is 0.25, with values greater than 4
shaded. The filled rectangles indicate locations used to create correlation maps shown in Fig. 10.

similar results. The insensitivity of the results to the
choice of C0 is due to the fact that all perturbations
eventually evolve into the leading Lyapunov vector in
the tangent linear model, regardless of their initial struc-
ture (Vannitsem and Nicolis 1997). Szunyogh et al.
(1997) found that, by three or four days, arbitrary per-
turbations in a simplified version of the NCEP global
forecast model evolved into structures resembling the
leading Lyapunov vector. Although one can certainly
propose analysis error structures that would impact the
spread distribution at arbitrary lead times, it appears that
beyond three days or so, the assumption that C0 5 I
produces a reasonable approximation to the spread dis-
tribution of the NCEP ensemble.

Figure 9 shows the 21 winter mean maps of 3-day
spread and spread variability (b) computed with the
linear QG model. The largest spread variability is lo-
cated in the eastern North Atlantic, near or just down-
stream of the maximum in mean spread. In the eastern
Pacific, the spread variability has two local maxima, one
just to the north and east of the mean spread maximum,
and one to the south and east.

Since we have shown that spread variability is gen-
erally associated with skill predictability in the NCEP
ensemble, we would expect skill to be most predictable
in regions where b is largest. In order to understand
why these regions are favored, we have correlated the
time series of lnS at the points indicated by the black
rectangles in Fig. 9 with the corresponding time series
of 3-day averaged 300-hPa streamfunction at all North-
ern Hemisphere grid points. The resulting correlation
patterns (Fig. 10) closely resemble the leading modes

of low-frequency variability in Northern Hemisphere
winter (see, e.g., Wallace and Gutzler 1981). For ex-
ample, spread variability in the eastern Atlantic is cor-
related with variability in the North Atlantic Oscillation
(NAO), while spread variability in the eastern North
Pacific is correlated with variability in the Pacific–North
American Pattern (PNA). Thus, it appears that variations
in the Pacific and Atlantic jets associated with the dom-
inant modes of Northern Hemisphere low-frequency
variability are primarily responsible for variations in the
geographical patterns of spread from forecast to fore-
cast. This explains why spread variability, and hence
skill predictability, should be maximized in jet exit
regions where low-frequency variability is strongest.

5. Summary and implications

Simple statistical considerations suggest that the more
the ensemble spread departs from its climatological
mean value, the more useful it is as a predictor of skill.
Therefore, the correlation between spread and error
should be related to the magnitude of spread variability.
Examination of NCEP ensemble data for two winter
seasons confirms that this is indeed true for an opera-
tional ensemble prediction system. In particular, spread/
error correlations are higher where day-to-day variations
of spread are largest, and spread is much more useful
as a predictor of skill when it is extreme (very large or
very small).

These results suggest that geographic variations of
skill predictability are strongly related to geographic
variations of spread variability. Spread variability can
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FIG. 10. Map of correlations between time series of lnS at points indicated by the black rectangles and 3-day averaged 300-hPa stream-
function. Contour interval is 0.1, negative values are dashed, and the zero line is thick solid. Assuming there are 20 independent samples
of lnS for each winter season, correlations above 0.1 are locally significant at the 95% confidence level. Using the test described by Livezey
and Chen (1983), the areas covered by correlations of 0.1 or greater are field significant at the 95% confidence level.

arise from two sources, 1) day-to-day variations in initial
perturbation amplitude, and 2) day-to-day variations in
the growth of these perturbations. For very short fore-
cast times, the former is likely to dominate, while the
latter will dominate for long forecast times. The NCEP
breeding scheme for generating ensemble perturbations
(Toth and Kalnay 1993) yields perturbations the mag-
nitude of which can vary significantly from day to day.
However, spread-error correlations are very small for
short forecast times (1–2 days), indicating that these
variations are not very representative of day-to-day vari-
ations of analysis error and that most of the useful skill
predictability in the NCEP ensemble is associated with
day-to-day variations in the perturbation growth.

With only two years of operational ensemble data it
is difficult to determine what the climatological mean
patterns of spread variability are, much less the dynam-
ical mechanisms responsible for those patterns. There-
fore, as a proxy for a long record of ensemble data, we
have used data from a five-level QG model linearized
about 3-day segments of NCEP reanalyses for 21 winter
seasons. One hundred and twenty-one 3-day linear en-
semble integrations are performed for each winter sea-
son, using random initial perturbations. The 21 winter
mean maps of spread variability indicate that skill pre-
dictability should be highest just downstream of the
maxima of climatological mean spread, over the eastern
North Atlantic and Pacific oceans. Correlation analyses
suggest that the dominant modes of northern winter low-
frequency variability (i.e., the PNA and NAO modes)
strongly modulate the growth of ensemble perturbations,
leading to enhanced spread variability and skill pre-
dictability, just downstream of the jet exit regions.

As Table 1 demonstrates, spread is only useful as a

skill predictor if it is extreme. Thus, it is crucial to know
what the underlying distribution of spread is for a given
ensemble configuration, so that extreme values of spread
can be identified. From Fig. 8, it is clear that there are
significant interannual variations of spread, so that more
than two years of ensemble data are needed to accurately
estimate the spread distribution. This suggests that in
order to effectively utilize the information content pres-
ent in the ensemble spread, a long record (10–15 yr) of
ensemble integrations with the operational ensemble
forecast system may be needed. This obviously would
be an extremely expensive undertaking with a state of
the art, high-resolution global forecast model, similar
to those being used now for operational ensemble fore-
casting. However, for skill prediction it may be bene-
ficial to run a simpler, lower-resolution ensemble for
which a large dataset can be generated at a reasonable
cost. The results presented here suggest that the potential
benefit of having an accurate estimate of the climato-
logical spread distribution may outweigh the loss of
accuracy incurred by using a simplified forecast model.
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APPENDIX

Simplified Dynamical Model of Spread Variability

After nondimensionalizing using the radius of the
earth (a) as a length scale and the inverse of the earth’s
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rotation rate (V) as a timescale, the governing equations
for the Lorenz P model may be written

2]¹ cj
21 J(c , ¹ c 1 2m) 1 = · 2m=xj j j]t

M 4 25 2(r 1 y¹ )¹ c ( j 5 1, 2, . . . , N),j j

(A1)

] 1
(f 2 f ) 1 J(c 1 c , f 2 f ) 1 s vj11 j j11 j j11 j j j]t 2

T 45 2(r 1 y¹ )(f 2 f ) ( j51, 2, . . . , N 2 1),j j11 j

(A2)
2¹ (f 2 f )j11 j

5 = · 2m=(c 2 c ) ( j 5 1, 2, . . . , N 21),j11 j

(A3)

where J(A, B) 5 (]A/]m)(]B/]l) 2 (]B/]m)(]A/]l), c
is streamfunction, f is geopotential, x is velocity po-
tential, m is the sine of latitude, v 5 dp/dt, and (rM, rT,
y) are damping parameters. The subscript j denotes the
pressure level [pj 5 1000 1 ( j 2 ½)Dp hPa] and Dp
is the pressure difference between adjacent levels (Dp
5 pj11 2 pj 5 2 1000/N hPa). The vertical velocity v
is staggered in the vertical with respect to c, f, and x.
The variables c, x, f, and v are nondimensionalized
by Va2, (Va)2, (Va)2, and VDp, respectively. The static
stability sj is

2Dp DQj js 5 , (A4)j 2 2V a

where Dpj 5 pj11 2 p j is the difference between the
Exner function [p [ ] at adjacent levels, andR/CPc (p/p )P 0

DQ j is the difference between the reference state po-
tential temperature (Q) at adjacent levels.

The horizontal boundary conditions are

vN 5 0 and v0 5 J(c1, h), (A5)

where h is topographic height (scaled by r0g/Dp), and
r0 is a reference value of density at 1000 hPa. The
velocity potential x is related to v through the continuity
equation

¹2xj 5 vj21 2 v j. (A6)

The vorticity equation (A1) is the prognostic equation
for this model. Since geopotential and streamfunction
are coupled through the balance equation (A3), elimi-
nation of the time derivatives in (A1) and (A2) using
]/]t of (A3) yields a diagnostic ‘‘v equation’’ for the
divergent flow. In order to derive the v equation it is
convenient to introduce a new variable, a, such that v j

5 2¹2aj and a j11 2 aj 5 xj. In terms of a, the v
equation is

4 22s ¹ a 1 = · 2m=[¹ {= · 2m=(a 1 a 2 2a )}]j j j11 j21 j

c c f25 = · 2m=(F 2 F ) 2 ¹ Fj11 j j

( j 5 1, 2, . . . , N 2 1), (A7)

where
c2 M 4 2 2¹ F 5 2(r 1 y¹ )¹ c 2 J(c , ¹ c 1 2m), (A8)j j j j j

and
f T 4F 5 2(r 1 y¹ )(f 2 f )j j j11 j

1
2 J(c 1 c , f 2 f ). (A9)j11 j j11 j2

The boundary conditions for (A7) are aN 5 0 and a0

5 2¹22J(c1, h).
Here we set N 5 5, y 5 2.338 3 1016 m4 s21, 5Mrj

1 days21 for j 5 1 (900 hPa) and zero otherwise, and
5 0.1 days21 for all j. The reference state potentialTrj

temperature profile Q j is computed from the climato-
logical December–February mean in the latitude band
308–608N. The horizontal resolution of the model is
T31, and a fourth-order Runge–Kutta time integration
scheme is used.
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