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ABSTRACT

If the general circulation exhibits nonlinear, regime-like behavior, it should be reflected in the
frequency distributions of the state of the atmospheric in phase space either in the form of bi- (or
: multi-) modality or skewness. In order to determine whether the Northern Hemisphere winter
circulation exhibits these characteristics, we examine frequency distributions of (1) the inner
product or spatial covariance, (2) the (spatial) “anomaly correlation”, and (3) the root mean
squared difference or “distance” between each map and each other map in phase space. Our dis-
tributions are based on a sample of 702 10-day lowpass filtered, hemispheric 500 mb height
anomaly maps (18 maps at 5-day intervals for the equivalent of 39 winter seasons). Excluding
pairs of maps from the same winter season, the sample size for the distributions is 240,156. All
the frequency distributions of (1) and (2) for the hemispheric maps exhibit a close fit to the
corresponding randomly generated distributions based on 20 spatial degrees of freedom. There
is no evidence of bimodality. However, the numbers of large positive spatial covariances and
anomaly correlations greatly exceed the numbers of their counterparts in the negative tails of the
frequency distributions (i.e., “analogues” outnumber “antilogues” of comparable quality). Using
a simple form of cluster analysis we show that three rather distinctive blocking patterns account
! for a disproportionate share of the largest positive values in the frequency distributions. The
asymmetries in our frequency distributions may be a reflection of regime-like behavior, but it is
g also conceivable that they could be the signature of more subtle forms of nonlinearity in the low
: frequency dynamics.

are also arbitrarily close together in phase space.
Neighboring points may also be laid down in the
The observational meteorologist is confronted historical record when the circulation revisits the

1. Introduction

with two radically different ways of conceptual-
izing the low-frequency atmospheric variability in
the historical record. The two paradigms relate to
the frequency distribution of the instantaneous
state of the hemispheric circulation, as viewed in a
multi-dimensional “phase space” whose coor-
dinates might be defined as the expansion coef-
ficients of the leading eigenvectors or spherical
harmonic coefficients of the 500 mb height field or
other indices representing dynamically important
quantities. Synoptic charts that closely resemble
one another correspond to neighboring points in
this phase space. Because of the time continuity
inherent in the atmospheric circulation, “state
points” that are arbitrarily close together in time

same region of phase space. We will refer to the
latter as recurrent patterns or “analogues.”

The “linear paradigm” asserts that the neighbor-
hood of the state point corresponding to the
climatological mean circulation should be the
most frequently visited region of phase space (i€
it should correspond to the mode in the frequency
distribution of the expansion coefficient of each of
the EOFs or spherical harmonics that defines the
multi-dimensional phase space). Hence, it is quité
natural to view the climatological mean state 35
the origin in phase space. Departures from th®
mean should be normally distributed in each
dimension so that the cloud of points in phas¢
space thins out monotonically with distance from
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the origin in all directions at the same rate. Tem-
poral expansion coefficients of any eigenvectors
{(or indices preferred structures that might be
present, such as the “PNA pattern”) should also
exhibit a zero mean and a normal distribution in
the time domain, so that for synoptic situations
characterized by large amplitudes of these
anomaly patterns, antilogues (a term used by
Van den Dool (1987) to denote a situation in
which the anomaly pattern on one synoptic chart
is analogous to the anomaly pattern of opposing
sign on the other) should be just as common as
analogues.

The non-linear paradigm views the climatologi-
cal mean as an arbitrary mathematical construct
which need not bear any relation to the most
frequently observed state(s) of the atmosphere. It
predicts that indices of spatial patterns may exhibit
highly skewed or even bi- (or multi-) modal fre-
quency distributions. In relatively simple dynami-
cal systems the modes in such distributions can
sometimes be identified with “attractor basins” in
mutli-dimensional phase space which correspond
to weather or climate regimes (Lorenz, 1963;
Mo and Ghil, 1988). In more complex systems,
structure (i.e., departures from normality) in the
frequency distributions may not be as easy to
interpret, but it is of no less importance as evidence
of nonlinear behavior.

These two contrasting schools of thought can
be traced back to the pioneering aerological
investigations of the 1940s, some of which inter-
preted the transient variability in terms of linear,
wavelike perturbations about the climatological
mean basic state, while others emphasized more
discrete transitions of the polar vortex between
zonal and meridional flow regimes: the so-called
“index cycle”. The works on blocking by Berggren
et al. (1949) and others exhibit a clear recognition
of these two alternative interpretations. With the
decline of interest in the index cycle as a long-range
forecasting tool in the 1950s, the linear paradigm
prevailed virtually unchallenged for several
decades. However, interest in nonlinear interpreta-
tions of low frequency variability has revived
markedly within the past few years, partially in
response to advances in the theory of nonlinear
systems (for a recent review, see Ghil, 1987) and
partially as a result of provocative observational
evidence put forth by Charney et al. (1981), Benzi
etal. (1986), Sutera (1986), Hansen and Sutera
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(1986), and Hansen (1986), Molteni et al. (1988,
1990) concerning the bi-modal frequency distribu-
tion of certain prescribed general circulation
indices.

The following two examples may be helpful
in illustrating the range of possible ways in
which nonlinear, regime-like behavior might be
manifested in atmospheric general circulation
statistics, and in setting the stage for the presenta-
tion of our results. In the first example, let us sup-
pose that phase space is dominated by two equally
distinct equilibrium states whose attractor basins
are visited with roughly comparable frequency. In
this case, the climatological mean state must lie
roughly halfway between the two equilibria and
their respective attractor basins in phase space, so
that pairs of anomaly maps corresponding to
points that lie in the same attractor basin will tend
to be positively correlated (in the space domain)
with one another, while pairs of maps correspond-
ing to points in different basins will tend to be
negatively correlated. If the density of points is
substantially larger within the attractor basins
than in between them, the frequency distribution
of correlation coefficients between pairs of
anomaly maps is likely to exhibit a bi-modal dis-
tribution, where the positive mode is associated
with spatial covariances or correlations between
pairs of maps corresponding to points located in
the same basin and the negative mode with pairs of
maps corresponding to points in the two different
basins.

In the second example, let us suppose that the
two attractor basins occupy similar volumes of
phase space but that one of them is visited much
more frequently than the other. As in the previous
example, the climatological mean state should lie
between the centroids of the points in phase space
associated with the two equilibrium states, but in
this case it should lie much closer to the centroid of
the more frequently visited basin, so as to be
virtually surrounded by the points identified with
that state. Anomaly maps corresponding to points
that lie within the less frequently visited basin,
which is relatively far from the origin, should
exhibit relatively strong, positive spatial covarian-
ces and correlations with one another, but they
should exhibit only a weak tendency to be
negatively correlated with the maps corresponding
to points in the other basin, which surround the
origin. The maps corresponding to points that lie
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within the more frequently visited basin should not
exhibit particularly large covariances with one
another, since they lie relatively close to the
climatological mean state, and therefore have
relatively low amplitudes. Nor should they tend to
be particularly strongly positively correlated with
one another, since they surround the origin.
Hence, in the frequency distributions of the spatial
covariances or correlations between all possible
pairs of anomaly maps, the regime-like behavior
characteristic of simple dynamical systems might
be manifested in the form of positive skewness
rather than distinct bi- or multi-modality.

In the second example, the more frequently
visited cloud of points in phase space need not be
associated with a single attractor basin: it might
equally well correspond to a linear dynamical
regime, or to an amorphous cloud of points
associated with a multiplicity of regimes that
cannot be distinguished from one another, given
the limited size of the data set. As long as most of
the points in phase space are identified with that
cloud, the above arguments should be applicable
regardless of the number of more remote (from the
origin), less frequently visited attractor basins that
might be present.

With these simple examples in mind, we will
now examine sample frequency distributions of
(1) the inner product or spatial covariance between
various pairs of anomaly maps, (2)the spatial
correlation coefficient between anomaly maps
(commonly referred to as the anomaly correlation)
and (3) the hemispherically averaged root-mean-
squared difference or distance between pairs of
maps in phase space, based on a large number of
pairs of 10-day lowpass filtered 500 mb maps. This
methodology was first used in a general circulation
context by Lorenz (1969); and it was applied in a
format very similar to the one that we will use in a
more recent study by Gutzler and Shukla (1984),
hereafter referred to as GS. It has also been used to
document the persistence of weather regimes by
Horel (1985).

Our study is based on gridded United States
National Meteorological Center operational
analyses of 500 mb height for the winter
(December, January, February) seasons during
the period January 1946 through December 1984,
the equivalent of 39 seasons, compared to 14
seasons used by GS. The data were subjected to
(1) preliminary quality control and interpolation

to remove erroneous grids and fill gaps in the
record so as to obtain complete time series at each
gridpoint, (2) removal of the climatological mean
annual cycle to produce anomaly time series,
(3) low-pass filtering in the time domain to remove
fluctuations with periods shorter than about 10
days, and (4) transformation to a 445-point half-
resolution grid to reduce the amount of computa-
tions required in the subsequent analysis. These
procedures are described in Kushnir and Wallace
(1989). From the resulting time series, we selected
maps at 5-day intervals (December 2, 7, 12, ..); a
total of 702 map times (39 seasons at 18 map
times). The dates are identical to those for which
pentad-mean charts are displayed in the World
Meteorological Organization (1983) and the
actual gridpoint values should be very similar to
the ones on those maps, since the filter used in the
recent study has a frequency response similar to a
5-day running mean.

2. Relationships between pairs of maps

Following the procedure used in GS, for each
pair of maps in this data set we computed what we
will refer to as the covariance

R;={z,z;},

the anomaly correlation
ry={zz;}/{z}* {z}'7,

and the root mean squared distance
si={(z;—2)*}",

where z is the 500-mb height anomaly, the indices
iand j identify particular maps in the 702 map data
set, and the brackets operator { } represents an
average over the 445 approximately evenly spaced
gridpoints. Hence R, r; and s, are 702 x 702
element arrays, in which only half the off-diagonal
elements need to be computed (since R;=R;»
etc.). Hence, the number of possible pairs of maps
is (702 x 701)/2 =246,051. In the calculations of
R and ry;, the spatial mean of the data set was not
removed. (We actually performed the calculations
with and without removing the spatial mean and
found that it made very little difference in the
results). For purposes of normalization, we also
computed the time mean of the spatial standard
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deviation §= {z,°}"*=84.5m where the overbar
refers to an average over all 702 map times. § can
also be viewed as the mean distance of the points
from the origin in phase space.

In contrast to GS, whose hemispheric averages
are based on the 30-70°N latitude belt, our results
are based upon the entire hemisphere poleward of
20°N. Since our domain is larger, our correlations
should tend to be slightly weaker than those
reported in their study.

Pairs of maps with large positive spatial
covariances and anomaly correlations and small
rms distances may be a reflection of circulation
regimes that persists for 5 days or longer, or they
may be a reflection of spatial patterns that recur
relatively frequently within the historical record.
In the present study, we are primarily interested
in latter. Therefore, in computing most of the
statistics that we will be dispaying, we imposed the
restriction that i and j in the above expressions be
representative of maps from different winters. With
this restriction, the frequency distribution of R;;, r;;
and s; are comprised of 702 x (39 winters @ 18
map times) x 3 = 240,156 samples. (The number of
“other winters” is 39 rather than 38 because the
time series of 500 mb height starts 1 January 1946,

50000
45000
40000
35000
30000
25000
20000
15000 }
10000

5000

frequency

0—1 -8 -6 -4 -2 0 2 4 6 8 1

covariance

Fig. 1. Frequency distributions of the spatial covariance
R, between all possible pairs of lowpass filtered 500 mb
height anomaly maps, scaled by dividing each value by
5%, the square of the mean spatial standard deviation.
Pairs of maps from the same winter are excluded in the
distribution (sample size 240,156). The bin width is 0.152
and no smoothing has been performed on the distribu-
tion. Circles: observations. Squares: normal distribution
with a standard deviation of 1/\/%. Triangles: Monte
Carlo simulation for 20 degrees of freedom. Numerical
values are tabulated in columns (d), (e), and (f) of
Table 1.
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so that maps for 40 different winter seasons are
involved in the calculations.)

Fig. 1 and Table 1 show the frequency distribu-
tion of Ry, scaled by dividing each value by 52. The
figure is based on pairs of maps excluding those
from the same winter and the table shows distribu-
tions calculated both including and excluding
maps for the same winter. Since the sample size is
so large, we did not consider it necessary to
employ any kind of smoothing of the values in
individual bins to make the distribution more

Table 1. Frequency distribution of the spatial
covariance R,; between pairs of 500 mb height maps;
(a) observations based on all possible pairs of maps
except each map with itself (246,051 pairs),
(b)—(c) a normal distribution and results of a Monte
Carlo simulation based on 20 degrees of freedom
and the same sample size; (d}—(f) as in (a)(c) but
based on all possible pairs of maps except those
from the same winter season (240,156 pairs)

All possible pairs Pairs from different
of maps winters

R, (a) (®) (o) (d) ey (O
obs. normal rand. obs. normal rand.

-13 0 0 0 0 0 0
—-1.2 0 0 0 0 0 0
—1.1 0 0 2 0 0 2
-1.0 7 1 5 7 1 5
-0.9 23 7 23 29 7 22
-08 127 45 113 124 4 110
—-07 407 229 409 437 224 400
—-0.6 1315 934 1200 1324 911 1161
—0.5 3618 3065 3154 3615 2991 3087
—04 8574 8103 8019 8643 7909 7822
—0.3 17358 17259 16985 17165 16846 16578
—0.2 29276 29619 29273 28891 28909 28532
—0.1 40901 40952 41051 39957 39971 40059
0.0 45822 45623 45945 44604 44530 44936

0.1 39717 40952 40739 38631 39971 39754

0.2 27958 29619 28992 27187 28909 28231

0.3 16235 17259 16813 15673 16846 16420

04 8294 8103 8238 7922 7909 8064

0.5 3823 3065 3377 3578 2991 3300

06 1518 934 1173 1442 911 1146

07 635 229 414 556 224 403

08 273 45 101 230 44 99

09 107 7 20 103 7 20

1.0 40 1 4 27 1 4

1.1 12 0 1 7 0 1

1.2 10 0 0 4 0 0

1.3 1 0 0 0 0 0
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representative of the population. From the figure,
it is evident that R;/s? is approximately normally
distributed with a standard deviation ~0.25. The
width of the frequency distribution is an indicator
of the equivalent number of spatial degrees of
freedom. Consider a random spatial field com-
prised of N linearly independent (ie., spatially
uncorrelated) gridpoints. For each gridpoint we
can construct time series containing the elements
a;, j=1, 702, each of which is drawn from a ran-
dom normal population with a standard deviation
of unity. Each of these N time series, which con-
tributes 1/Nth of the variance 52, can be viewed as
constituting one spatial degree of freedom of this
random field. Since the time series are linearly
independent and 52 = 1, it follows that

N
%= {aiaj} =Al/- Z A Aji -
k=1

The distributions of a; aj for individual gridpoints
are not normally distributed, but it is readily
verified that their standard deviation is also equal
to unity. As N increases, the population of the
average of a,a, over N gridpoints approaches a
normal distribution, and it narrows approximately
in inverse proportion to ﬁ One of the three cur-
ves in Fig. 1 corresponds to a Monte Carlo simula-
tion with N = 22 (20 degrees of freedom), which we
found to produce the best fit to the observations. It
is based on 240,156 samples, each of which
represents the average of 22 products of random
numbers drawn from a normal distribution with a
standard deviation of 1. Also plotted in Fig. 1 is the
normal distribution corresponding to a standard
deviation of 1/\/%. The three curves in the figure
are virtually indistinguishable.

Upon inspection of Table 1, which shows the
tails of the frequency distributions in more detail,
it is evident that there are many more occurrences
of strong positive projections, with R, > 0.55%
than strong negative ones with R, < —0.55% and
the asymmetry increases as one moves farther out
in the tails of the distributions. Such an asymmetry
is to be expected in a distribution that includes
pairs of maps from the same winter (column (a)),
which may be separated in time by as little as 5
days. However it is notable that substantial asym-
metry, in the same sense, is also evident in the dis-
tribution in which pairs of maps from the same
winter are excluded (column (d): it is much larger

than in the Monte Carlo simulation, which
appears in column (f) of the Table. (H. van den
Dool (1989, personal communication ) has noticed
a similar asymmetry in his search for analogous
and antilogous for use in statistical weather predic-
tion: his anomaly correlations are based on
circular regions roughly 2000 km in diameter.)
For the observed frequency distribution as a
whole (excluding pairs of maps for the same win-
ter), negative covariances outnumber positive ones
by 51.2/48.8%. It is readily verified that the sum-
mation of R;/5* over all pairs of maps, including
those from the same winter and each map with
itself, must be identically equal to zero. When just
the covariances of individual maps with them-
selves are withheld from the distribution, as in
the first column of Table 1, the mean drops to
—0.00083, and when all covariances between pairs
of maps that fall within the same winter season are
withheld, as in the fourth column of Table 1, it
drops to —0.0037. Van den Dool (1987) has poin-
ted out this bias toward negative projections in the
context of the cross validation of statistical predic-
tion schemes. The asymmetries in the observed
frequency distribution are reflected in its moment
coefficient of skewness (+0.095) which, though
barely perceptible in Fig. 1, is statistically signifi-
cant at a very high confidence level. (According to
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Fig. 2. Frequency distribution of the anomaly correla-
tion r, between ail possible pairs of lowpass filtered
500 mb height anomaly maps, excluding those from the
same winter (sample size 240,156). The bin width is 0.05
and no smoothing has been performed on the distribu-
tion. Circles: observations. Triangles: Student ¢ distribu-
tion for the same sample size with +=r,(,/N—2)/

1 —r2, where N — 2, the number of degrees of freedom,
is set equal to 20. Squares: results for the Monte Carlo
simulation with 20 degrees of freedom.
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Brooks and Carruthers (1953), when N, the num-
ber of samples, is large, the standard error in the
skewness is given by z=,/6/N. Based on this test,
the observed distributions of R;/5* and r; both
depart from the normal distribution by more than
10 standard errors, which is indicative of con-
fidence levels far in excess of 99.99 %.)

The frequency distribution of r;, shown in Fig. 2
is qualitatively similar to that of R;. When
compared with the Student ¢ distribution for
t=r/N—2//1—r% and with a Monte Carlo
simulation based on correlation coefficients
between sums of products of pairs of number
drawn from a normalized, random normal dis-
tribution, it also exhibits the closest agreement
when 20 is used as the number of degrees of
freedom (i.e., with the sum of 22 products in the
Monte Carlo simulation). The tails of the same fre-
quency distributions are shown in more detail in
Table 2. This time only results for the distribution
generated by excluding pairs of maps from

Table 2. Positive (+ ) and negative (— ) tails of the
Jrequency distribution of the anomaly correlation r;
between all possible pairs of 500 mb height maps,
excluding those from the same winter (sample size
240,156); “‘obs” denotes observed values; “‘rand’’
denotes values from the Monte Carlo simulation;
and “'t” denotes values calculated from the theoreti-
cal Student t distribution; the cumulative frequency
distributions are calculated working inward from the
tails

|r; 050 0.55 060 0.65 0.70 0.75 0.80 0.85
obs.+ 1545 809 388 149 44 6 0 0
obs.— 1378 720 255 69 8 1 0 0
“r 1605 839 390 156 52 14 3 0
rand. + 1607 828 387 129 46 13 0 1
rand. — 1613 843 383 175 48 14 4 1

Cumulative

|ryl 050 0.55 0.60 0.65 0.70 0.75 0.80 0.85
obs.+ 2941 1396 587 199 50 6 O O
obs.— 2431 1053 333 78 9 1 0 0
“r 3059 1454 615 225 69 17 3 0
rand. + 3011 1404 576 189 60 14 1
rand. — 3081 1468 625 242 67 19 5 1
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the same winter are shown in the Table. The
corresponding cumulative frequency distributions
shown in the lower rows of the Table were con-
structed by starting at the tails of the distribution
and working inward toward the center.

It is evident from Fig. 2 and the Table 2 that the
theoretical distribution fits the Monte Carlo
simulation extremely well, even in the tails of the
distribution, and that both fit the observed dis-
tribution fairly well. Tt is notable that the asym-
metry between the positive and negative tails of the
observed frequency distribution is about a factor
of five larger than that in the Monte Carlo simula-
tion. The moment coefficient of skewness of the
distribution (0.063) is highly significant, but is sub-
stantially smaller than the corresponding value for
the frequency distribution of R;. The difference
between the two distributions suggests that the
analogues in the positive tail of the frequency dis-
tribution tend to be characterized by large spatial
standard deviations s,. If this is, in fact, the case
we might expect the ensemble mean of s;s,/5> for
the 240 (0.1%) pairs of maps with the highest
values of r; to be substantially higher than 1.0. The
observed value for the hemispheric maps is 1.18,
which is statistically significant at a level well
beyond 99.99 %. This result is consistent with the
heuristic argument in Section 1.
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Fig. 3. Frequency distribution of the root mean square
difference, averaged over all gridpoints, referred to as the
“distance” s; between all possible pairs of lowpass filtered
500 mb height anomaly maps, excluding those from the
same winter (sample size 240,156), scaled by dividing
each value by §, the mean spatial standard deviation
about the climatological mean map. The bin width is
0.055 and no smoothing has been performed on the dis-
tribution. Circles: observations. Triangles: Monte Carlo
simulation with 20 spatial degrees of freedom.



22 J. M. WALLACE ET AL.

The corresponding distribution of s,, scaled by
dividing each value by §, is shown in Fig. 3. For the
distribution as a whole, including maps within the
same winter and each map with itself, it is readily
verified that the mean value of s5;; must be identi-
cally equal to \/5 5. The closest “neighbors” in the
frequency distribution are on the order of 0.65
apart and the farthest are about 2.35 apart. Only a
few hundred pairs of maps are separated by less
than 0.855. Hence, consistent with the results of
Lorenz and GS, the historical record is far too
short to provide really close analogues among
hemispheric maps.

3. Cluster analysis

In order to further explore the distribution of
hemispheric 500 mb height patterns in phase
space, we performed cluster analysis, using the
rather simple method proposed by Ward (1963)
and discussed in more detail by Wishart (1969),
which exploits the distance matrix described in the
previous section, where all possible pairs of maps
are included in the distribution, except each map
with itself. Starting with all 702 maps, the two
closest neighbors in that distribution are identified
and averaged together to form a new map (ic., a
cluster with two members) which, in subsequent
calculations, replaces the two maps from which it
was formed. The distances between this new map
and all the remaining 700 maps are then com-
puted, and the revised distance matrix is inspected
to identify the two closest neighboring maps.
These two maps, in turn, are averaged to form a
new map, and the procedure was repeated until,
after 701 iterations, only a single map remains.
Each time two maps are averaged to form a new or
enlarged “cluster”, they are weighted in accor-
dance with the number of maps that have been
averaged together to form them. For example if, on
the second iteration, the two-member cluster map
merges with another map to form an enlarged
cluster, it receives twice as much weight as the
other map. It is readily verified that the final
“product” of this procedure is the 702 element
cluster that constitutes the climatological mean
map. We then work backwards from the final step
and inspect the two clusters that merged to form
the climatological mean map, and trace back to
find the two clusters that merged to form them,

etc., until we encounter clusters too small to be of
interest. A small segment of the resulting “family
tree” is shown in Fig. 4 and mean maps that
correspond to the centroids of three of the more
interesting clusters are shown in Fig. 5.

The statistical significance of the clusters derived
from this procedure is a rather involved issue that
is beyond the scope of this paper. It will suffice to
say that (1) the clusters shown in Fig. 5 are quite
reproducible in subsets of the data, (2) they are
recoverable (though with somewhat reduced
amplitude) in a cluster analysis based on the first
five principal components of the 500 mb height
field and (3) they are remarkably similar to some
of the clusters identified by Kimoto (1987, 1989)
using a “bump hunting” algorithm that bears little
resemblance to Ward’s scheme. In the latter study
the analysis was based upon direction in phase
space (relative to the origin) rather than distances
between pairs of maps.

The cluster analyses of Mo and Ghil (1988) and
Molteni et al. (1990) did not yield patterns similar
to those shown in Fig. 5. In the former the clusters
were defined in terms of direction in a seven dimen-
sional phase space. In contrast to Kimoto’s
studies, in which the phase space was defined in
terms of the empirical orthogonal functions of the
covariance matrix, Mo and Ghil defined their
phase space in terms of the empirical orthogonal
functions of the temporal correlation matrix. The
resulting patterns tend to be of lower amplitude
and more wavelike than those obtained by Kimoto
and us. When, in response to a suggestion of

72 25
94 166 85 60
423 702 279
122 257 194 o4
135 130

Fig. 4. Summary of the results of the last 7 steps in the
cluster analysis. The center number (702) represents the
final cluster, with 702 members, which corresponds to the
climatological mean map. It is flanked by the two clusters
(with 423 and 279 members), which merged in the final
step of the analysis to form it. Those two cluster, in turn,
are connected to the two clusters that merged to-form
them, etc., to form a schematic “family tree”. Maps for
the points in phase space that correspond to the cen-
troids of the clusters indicated in boldface type are shown
in the Fig. 5.
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Fig. 5. Left: anomaly maps for the points in phase space that correspond to the centroids of three of the more
reproducible clusters depicted in the previous figure. Right: the corresponding composite maps for the total 500 mb
height field. Printed at the upper right of the anomaly maps is the number of maps in the cluster.
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Kimoto, we repeated our analysis using the
correlation matrix in place of the covariance
matrix, our patterns became much weaker and
more wavelike. The results of Molteni et al. are dif-
ficult to compare with the others because they are
based on perturbations from the zonal mean basic
state, and hence they do not have a zonally sym-
metric component.

All three patterns in Fig. 5 are characterized by
distinctive blocking signatures: i.e., a single promi-
nent region of positive height anomalies along
60°N that corresponds to a well defined ridge in
the corresponding composite map. In contrast to
the patterns derived from conventional or rotated
component analysis, the patterns associated with
these clusters tend to be less wavelike; their
amplitude tends to be more concentrated in a
single “center of action”. It is notable that for none
of these patterns does there exist a counterpart
cluster of opposite polarity, with negative height
anomalies as its primary center of action. All three
patterns are formed from the merging of “sub-
clusters”, some of which exhibit patterns similar to
those in Fig.5 but with substantially larger
positive anomalies in the vicinity of their primary
“center of action”.

We have attempted to crudely quantify, in
Table 3, the contribution of these three clusters to
the skewness of the frequency distribution of r,.
This table, which is presented in the same format

Table 3. Positive tails of frequency distributions of
the anomaly correlation r; between pairs of maps
drawn from subsets of the data set; C denotes the
subset consisting of all the maps in the three clusters
shown in Fig. 5 (25481 pairs); NC denotes the subset
consisting of all the maps not in those three clusters
(48438 pairs); in both distributions, pairs of maps
Jrom the same winter are excluded; frequencies are
expressed in terms of numbers of pairs of maps per
100,000, the cumulative frequency distributions are
calculated working inward from the tails

Iryl 050 055 060 065 0.70 0.75 0.80 0.85
C+ 2029 1356 754 349 110 20 O O
NC+ 950 481 215 81 25 2 0O 0
Cumulative
C+ 4618 2589 1233 479 130 20 0 O
NC+ 1754 804 323 108 27 2 O O

as the previous one, was constructed as follows.
We extracted from the 702 maps in the data set, the
ones associated with the three clusters shown in
Fig. 5; a total of (85+ 135+ 166) =386 maps and
we subjected these maps to the analysis described
in Section 2, just as if they constituted the entire
data set. Pairs of maps from the same winter were
not included in the distribution. The results are
presented in the rows labeled C in the Table. We
then performed a similar analysis upon the remain-
ing 702 — 386 = 316 maps and printed the results
in the rows labeled NC. To make the results com-
parable, we expressed the frequencies for all rows
in units of number of pairs of maps per 100,000. In
both the C and NC columns the positive correla-
tions outnumber negative correlations in the tails
of the distributions (not shown), but this tendency
is clearly much stronger in the subset of the maps
(C) associated with blocking.

4. Discussion

The observational evidence of nonlinear “regime
like” behavior presented in the previous two sec-
tions is rather subtle. In none of the frequency dis-
tributions that we examined did we find evidence
of outright bimodality analogous to that reported
in the studies cited in the Introduction, nor did any
of the more prominent spatial patterns that
emerged in our cluster analysis strongly resemble
those that have been reported in association with
bimodality. However, we do see evidence of the
skewed frequency distributions that one should
expect to prevail in a system that exhibits one (or
more) multiple equilibria relatively far removed
from the mean state, which is (are) observed only
a relatively small fraction of the time. Blocking
episodes appear to be responsible for much of the
observed skewness. It is interesting to note that
skewness is common, not only in the frequency dis-
tributions documented in this paper, but also in
time series of 500 mb height itself (White, 1980,
Nakamura and Wallace, 1991). The strongest
positive skewness is, in fact, observed over the
northern oceans, in regions noted for blocking.

The existence of skewed frequency distributions
does not, in and of itself, constitute definitive proof
of the existence of regime-like behavior. For exam-
ple, in the presence of a zonally varying basic state,
pairs of numerical integrations of the barotropic
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vorticity equation with identical forcing, but for
the sign, exhibit significant differences in shape and
amplitude of the resulting finite amplitude pertur-
bations (Simmons et al., 1983). Such asymmetries
could produce widespread skewness in the fre-
quency distributions of 500 mb height and other
general circulation statistics, even in the absence of
well defined regime-like behavior. Nor does the
evidence that we have presented preclude the
possible existence of more distinct hemispheric
circulation regimes such as those reported in the
observational studies cited in the Introduction.
In the presence of seasonal and interannual
variability of the boundary forcing and super-
posed, slowly propagating planetary waves, such
regimes, even if they existed, might not be clearly
revealed in the analysis employed in this paper,
which relies heavily upon linear correlations.
Hence, the question of whether low-frequency
atmospheric  variability exhibits regime-like
behavior may prove very difficult, if not impossible
to answer definitively on the basis of observational
evidence alone.

The analysis in Section 2 indicates that the
number of spatial degrees of freedom in the 10-day
lowpass filtered hemispheric maps is of order 20.

Van den Dool and Chervin (1986) have made
similar estimates based on anomaly correlations
between monthly mean maps and found values of
15-20 for the winter months. Such estimates, based
on monthly mean maps should be expected to be
somewhat smaller than ours because the anomaly
patterns tend to be simpler and larger in horizontal
scale than those in more lightly lowpass filtered
charts (Blackmon etal., 1984; Kushnir and
Wallace, 1989).
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