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ABSTRACT

The barotropic point jet problem is used to study the impact of resolution on a numerical simulation of
barotropic instability. This particular problem is studied because of the close relation of the linearized version
of the problem to baroclinic instability.

This study finds that the channel-averaged wave enstrophy and the fluxes at the jet in the wave–mean flow
equilibrated state are underestimated when the resolution of the model is inadequate to resolve the analytic
linear growth rates. Moreover, the resolution of the model is found to impact the wave–mean flow equilibrated
state even when the analytic linear growth rates are resolved. This is due to potential vorticity gradients and
fluxes in the equilibrated state being largely independent of resolution, as long as the linear growth rates are
adequately resolved. In a coarse-resolution model this results in momentum fluxes and shear at the vertex of
the jet that are dependent upon the resolution of the model.

The results of this study suggest that resolution will also impact the numerical simulation of baroclinic
instability.

1. Introduction

Two-level models of the atmosphere are commonly
used to study the large-scale processes of the midlatitude
troposphere. The eddies in the two-level model studies
act to bring the model’s mean state to an equilibrium
that has meridional temperature gradients that are small-
er than the temperature gradients in radiative–convec-
tive equilibrium. These results have been used to support
the hypothesis that dynamical heat transports due to
baroclinic eddies play a dominant role in determining
the temperature structure of the midlatitude troposphere.
Stone (1978) proposed that baroclinic eddies that have
been destabilized by a surface temperature gradient will
act to reduce the temperature gradient in order to sta-
bilize the eddies. By the thermal wind relation, a me-
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ridional temperature gradient is proportional to the zonal
wind shear. Therefore, the critical temperature gradient
needed to stabilize the flow can be expressed as a critical
zonal wind shear. Stone (1978) proposed that this critical
shear was equivalent to the critical wind shear for in-
stability in the two-level quasigeostrophic model, de-
rived by Phillips (1954). Stone used the term ‘‘baroclinic
adjustment’’ for the process of stabilizing the flow by
dynamical heat transports. He found a strong coinci-
dence between Phillips’s critical shear and the observed
shear in the midtroposphere. This coincidence was
found for all seasons, regardless of the large seasonal
variations in the diabatic forcing. This was earlier noted
by Pocinki and reported in Thompson (1961, p. 113).

Stone and Branscome (1992) studied large-scale ed-
dies in a two-level quasigeostrophic midlatitude b-plane
model. In this model study the static stability was set
equal to a constant, so the change in the temperature
structure due to baroclinic adjustment was characterized
by the steady-state meridional temperature gradient. The
results of the study showed that the shear of the steady
state was proportional, and supercritical, to Phillips’s
two-level critical shear. The results of the Stone and
Branscome study imply that a weaker form of the bar-
oclinic adjustment hypothesis has a strong influence in
determining the equilibrium temperature structure. A
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further result of this study was that the meridional tem-
perature gradient was independent of the magnitude of
the diabatic forcing and linearly proportional to the stat-
ic stability. These results are consistent with the baro-
clinic adjustment hypothesis and with the neutral state
predicted by the Charney–Stern criterion for stability.
The main difference between the results of this study
and the predicted neutral state is that the equilibrium
shear is still unstable by the Charney–Stern theorem,
even though the growth of the baroclinic eddies has been
suppressed in the model.

The Charney–Stern criterion for stability requires
that, in the absence of surface temperature gradients,
the meridional potential vorticity gradient must not
change sign. In the two-level model with fixed static
stability, this criterion is equivalent to Phillips’s critical
shear (viz. Lindzen 1993). In the two-level model with
variable static stability, both the static stability and the
zonal wind shear are modified by the baroclinic ad-
justment (Held and Suarez 1978; Held 1978b; Zhou and
Stone 1993). In a continuous model, the vertical profile
and the magnitude of the zonal wind and/or the static
stability are modified by the baroclinic adjustment
(Lindzen and Farrell 1980b; Gutowski 1985; Gutowski
et al. 1989). The extreme vertical truncation of the two-
level model makes it unclear how baroclinic adjustment
will be realized in a model with more detailed vertical
structure.

The present paper considers the role of resolution on
a simpler but related problem: namely, the nonlinear
evolution of a barotropic point jet whose linear stability
properties are identical to those of the Boussinesq Char-
ney problem (Lindzen et al. 1983). The cross-stream
direction in the barotropic problem corresponds to the
vertical direction in the baroclinic problem. This model
study focuses on the modification of eddy–mean flow
interactions due to variations in the ‘‘vertical’’ resolu-
tion. While the barotropic point jet cannot be used to
investigate the impact of resolution on the full three-
dimensional baroclinic problem (e.g., the barotropic
point jet cannot be used to determine the importance of
feedbacks associated with a variable static stability or
feedbacks associated with barotropic effects on baro-
clinic instability), these results may suggest to what ex-
tent the results of two-level model studies, such as Stone
and Branscome (1992), Zhou and Stone (1993), and
Held (1978b), can be extended to a multilevel model
and to what extent the results are determined by the
extreme truncation of a two-level model.

Section 2 describes the model used in this study and
discusses previous studies of the barotropic point jet.
Section 3 discusses the results of the linearized version
of the model. Section 4 discusses the modification to
the results of section 3 when wave–mean flow inter-
actions are allowed. Section 5 explores the extension of
the results of section 4 to the baroclinic problem. Section
6 presents a brief summary of the results of this study
of the barotropic point jet.

2. The barotropic point jet

The barotropic point jet problem was developed for
a number of reasons including the possibility of pro-
viding a simplified context for examining the nonlinear
equilibration of an instability analogous to baroclinic
instability. Lindzen et al. (1983) showed that the bar-
otropic easterly jet stability problem is mathematically
equivalent to the linear Boussinesq Charney problem.
The linearized equation for the time rate of change of
the perturbation potential vorticity, q9, on a basic zonal
flow, is

]q9 ]q9 ]q
1 u 1 y9 5 2Dq9, (1)

]t ]x ]y

where the meridional potential vorticity gradient is

]q
5 b 2 u , (2)yy]y

and D21 is the dissipation time constant and u and y are
components in x and y directions. In the wave–mean
flow integrations, to be discussed in section 4, this term
acts to both dissipate the waves and maintain the mean
flow. In the barotropic problem, there is no distinction
between perturbation potential vorticity and perturba-
tion vorticity,

2 2] c ] c
q9 5 1 , (3)

2 2]y ]x

where c is the perturbation streamfunction. Assuming
normal-mode solutions, the equation governing the lin-
earized perturbations reduces to

2b 2 u (2k c 1 c )yy yy2c 1 2 k c 5 iD , (4)yy [ ]u 2 c k(u 2 c)

where solutions are assumed to be of the form C 5
c(y)eik(x2ct) .

Figure 1 shows the initial jet structure and the po-
tential vorticity gradient of the basic state for the bar-
otropic half jet and for the Charney problem. In a nu-
merical simulation of this problem, Schoeberl and Lind-
zen (1984) demonstrated that in the absence of forcing,
an unstable jet evolved to a steady state that was neutral
to the eddies. This state was the neutral state as defined
by the Charney–Stern criterion for stability. The shear
of the flow was modified by the waves as predicted by
the linear adjustment theory. The jet evolved from a
point to a parabola such that

q y 5 b 2 u yy 5 0. (5)

When dissipation was added to the system, the neutral
state was found to be supercritical by the Charney–Stern
theorem, even though the growth of the waves had been
suppressed. The steady state in the presence of dissi-
pation was found to be independent of the magnitude
of the dissipation. The supercritical neutral state was
found to have a balance between the generation of vor-



1 DECEMBER 2000 3801S O L O M O N A N D L I N D Z E N

FIG. 1. The initial jet structure and the potential vorticity gradient
of the basic state for the barotropic jet and for the Charney problem.
The qyBT and qyBC signify the meridional potential vorticity gradients
at the boundary in the barotropic jet and the baroclinic Charney
problem, respectively.

ticity by the mean flow and the dissipation of vorticity
due to the eddies. Schoeberl and Lindzen (1984) note
that the neutral state would not be independent of the
magnitude of the dissipation if the same linear damping
had not been used for both perturbations and the main-
tenance of the mean flow.

The present problem allows us to investigate the pri-
mary aspects of the impact of resolution on the lin-
earized Charney problem in a two-dimensional model.
The dispersion relation, relating growth rate, b, zonal
wind, and resolution, is easily obtained.

Since the barotropic jet is two-dimensional it cannot
be used to investigate the full three-dimensional non-
linear baroclinic problem. The analogy between the lin-
earized barotropic jet and the linearized Boussinesq
Charney problem assumes that the meridional wave-
number is equal to zero. Even though this is the most

unstable wavenumber for the Charney problem, it is
most likely not the dominant meridional wavenumber
that would be found in the presence of a jet. Lindzen
(1993) notes that a meridional jet of width L would
impose a meridional wavenumber of l 5 1/L on the
baroclinic instabilities. For a characteristic winter sub-
tropical jet with a width of 0.15a, where a is the radius
of the earth, this meridional wavenumber is found to be
close to global wavenumber 6. Observations of the mid-
latitude winter indicate that this is the wavenumber as-
sociated with the maximum normal-mode growth. Solv-
ing the linearized Boussinesq Charney problem in a
channel will also introduce a meridional scale.

3. Linear results

In order to derive boundary conditions for the bar-
otropic jet that are analogous to the Charney problem,
symmetry of the perturbation streamfunction was re-
quired at the vertex of the jet. Schoeberl and Lindzen
(1984), Schoeberl and Nielsen (1986), and Nielsen and
Schoeberl (1984) studied the full 1-point jet and im-
posed the boundary condition that there be no mass flux
into the jet at the walls sufficiently far from the jet
maximum. This formulation of the problem does not
exclude the asymmetric modes from the solution and
therefore does not strictly satisfy the requirement that
the solution be symmetric about the jet. This was found
to be an adequate formulation to the problem that was
investigated by these previous studies because, for the
values of the zonal mean wind and b that were used,
the asymmetric modes were found to be small relative
to the symmetric modes. This may not be true generally.
Therefore, this study will only look at the half jet so
that the symmetric boundary condition is strictly sat-
isfied.

The linearized equation for the perturbation stream-
function, Eq. (4), has been solved numerically as an
eigenvalue problem for the phase speed, c. In the studies
of Schoeberl and Nielsen (1986) and Nielsen and Schoe-
berl (1984) the barotropic problem is solved numerically
with the perturbation and mean streamfunction at the
same meridional levels. The mean zonal wind is cal-
culated using a centered finite-difference scheme so that
the perturbation streamfunction and the mean zonal
wind are placed at the same meridional level. When this
numerical scheme is used to set up the two-level for-
mulation of the barotropic problem, the use of the cen-
tered finite-difference scheme introduces a computa-
tional mode into the equilibrium solution. Therefore, a
staggered scheme is used, which places the mean
streamfunction at the midlevel so that the mean zonal
wind is calculated at that level. The use of this scheme
in the numerical integration of the barotropic problem
removes the computational mode. The boundary con-
ditions on the perturbation streamfunction are a rigid
boundary at y 5 L and a radiation condition at y 5 0.
The radiation condition at y 5 0 is
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TABLE 1. Values of the critical zonal wind for resolutions [points
(pt)] used in this study of the barotropic point jet.

n
(pt)

uc

(m s21)
Gc

(1025 s21)

3
5
9

17

230.00
215.00
27.50
23.75

1.20
0.60
0.30
0.15

]c9 ]c9
5 C. (6)

]t ]y

Here C is adjusted so that the initial linear growth rates
in the wave–mean flow problem are equal to the linear
growth rates from the eigensystem for the phase speed.
Periodic boundary conditions are applied in the zonal
direction. The rigid boundary condition at y 5 L, the
point of the half jet, is equivalent to the requirement
that the perturbation streamfunction be symmetric about
the vertex of the jet. This is the boundary condition that
must be imposed in order to make this barotropic prob-
lem analogous to the linearized Charney problem. The
barotropic problem which is equivalent to the two-level
baroclinic problem has three levels where the pertur-
bation streamfunction is defined. If the numerical prob-
lem is solved using adequately high resolution, then the
results are independent of the scheme used. In all of the
calculations, there are 129 points in the zonal direction
and the length of the channel is kept fixed at 40 000
km. The width of the half jet is held fixed at 2500 km.
In all of the integrations b 5 1.9 3 10211 m21 s21.

a. Critical zonal mean wind

In an undissipated system, there is no normal-mode
growth when the Charney–Stern criterion for stability
is satisfied. This criterion is met when the meridional
potential vorticity gradient at the point jet does not
change sign and can be written

2G
b 2 $ 0, (7)

Dy

where G is the constant zonal mean shear of the basic
state and is equal to G 5 2u0L21. In this problem L is
equal to the width of the half jet and u0 is the zonal
wind at the vertex of the jet. Equation (7) can be solved
for the critical zonal mean wind for instability. Table 1
lists the values of the critical zonal wind for resolutions
used in this study.

In Table 1, Gc is the critical shear and n is the number
of meridional gridpoints that define the half jet. For the
same value of the zonal mean wind, an increase in res-
olution will make the problem more unstable. This is
because the delta function in the meridional gradient of
the potential vorticity becomes better defined when the
resolution is increased. This decreases the value of the
potential vorticity gradient at the vertex of the jet. A

decrease in resolution can increase the value of the po-
tential vorticity gradient to the point where the waves
have been completely stabilized. When Dy → 0, the
system is always unstable and Gc → 0. With the given
parameters, the 3-point system, which is equivalent to
the two-level model, is stable for all zonal mean winds
less than 230 m s21 in magnitude.

b. Linear parameter study

The linear stability of the Charney problem was stud-
ied by Held (1978a). This study derived the vertical
scale height of linear quasigeostrophic waves that were
destabilized by surface temperature gradients. This ver-
tical scale height, h, is only relevant when h K H, where
H is equal to the geometric height of the model and

2f ]u/]z0h 5 , (8)
2N ]q/]y

where N 2 is the Brunt–Väisälä frequency and the po-
tential vorticity gradient is evaluated at the jet. The shear
and static stability are constant. The horizontal wave-
length of the most unstable wave was derived to be
proportional to

lh 5 Nh/ f 0. (9)

Held (1978a) assumed that the horizontal phase speed
of the waves was scaled by h]u /]z. When h is the rel-
evant scale height,

]u u0h 5 h K u . (10)0]z H

The horizontal phase speed, c, is O(u0) in the baro-
tropic point jet problem (Schoeberl and Lindzen 1984;
Nielsen and Schoeberl 1984). Therefore, c will be scaled
by u0 instead of the scaling used by Held (1978a). Using
this scaling, the growth rate of the waves would be O(kc)
5 O(u0f 0/Nh). This scaling analysis can be applied to
the barotropic point jet by replacing 2( f 0/N)(]/]z) with
]/]y. The meridional scale height of the waves, for the
barotropic point jet, is calculated to be

]u ]q
l 5 (11)@]y ]y

2G
5 2G b 2 (12)@1 2Dy

215 (2(n 2 1)/L 2 b/G) . (13)

Since 2G/Dy . b for instability, a decrease in the
resolution will increase the scale height of the waves.
When l k L, the scale height of the waves is replaced
by L. The zonal wavelength of the most unstable wave
is proportional to l. This means that the most unstable
wavelength will increase when the resolution is de-
creased. The growth rate of the most unstable wave is
O(kc) and is proportional to 2u0/l 5 2L]q /]y. De-
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FIG. 2. Nondimensional growth rates when the zonal mean wind is increased from 245
to 25 m s21, from the model run using the staggered scheme for the 9-point half jet with
1/D 5 0 days and b 5 1.9e211 m21 s21.

creasing the resolution decreases the jump in the po-
tential vorticity gradient at the jet and decreases the
growth rate of the most unstable wave.

Lindzen and Farrell (1980a) demonstrated that the
linearized Boussinesq Charney problem on a semi-in-
finite plane has a maximum nondimensional growth rate
that is independent of b, G, and L, assuming that the
relevant length scale used to nondimensionalize the
equations is equal to G/b. This maximum nondimen-
sional growth rate is approximately equal to 0.29 and
occurs at nondimensional wavenumber 0.9. The maxi-
mum dimensional growth rate is approximately equal
to 0.29G and occurs at wavenumber 0.9b/G. Therefore,
the maximum dimensional growth rate increases linearly
with shear and is independent of b. This maximum
growth rate occurs at longer wavelengths as G/b is in-
creased. Figure 2 shows the nondimensional growth
rates when the jet maximum is increased from 245 m
s21 to 25 m s21 in a 9-point model without dissipation,
following the scaling of Lindzen and Farrell (1980a).
This figure shows that the analytic result, that the max-
imum nondimensional growth rate is independent of G,
breaks down when the zonal mean wind at the jet is
less than 215 m s21 in magnitude. The nondimensional
growth rates decrease rapidly as the jet maximum be-
comes larger than 215 m s21. All waves become stable
for jet maxima less than 27.5 m s21 in magnitude as
predicted by Table 1. Figure 3 shows the dimensional
growth rates for the same values of b and G as Fig. 2.
This figure shows that the most unstable wave for the

9-point model with a jet maximum of 235 m s21 without
dissipation is a wave 7 with a growth rate of 0.35 day21.
Figure 4 shows the nondimensional growth rates for the
same parameters as Fig. 2 with a dissipation timescale
of D 5 0.05 day21. Comparing Fig. 4 with Fig. 2, it is
seen that introducing dissipation causes the nondimen-
sional growth rates to uniformly decrease by approxi-
mately 0.04 and stabilizes all waves for a zonal mean
wind at the jet less than 212.5 m s21 in magnitude. The
analytical result of a constant nondimensional growth
rate breaks down for jet maxima less than 230 m s21

in magnitude. Figure 5 shows the nondimensional
growth rates when b is increased from 1.0 3 10211 m21

s21 to 2.6 3 10211 m21 s21 with a dissipation timescale
of 0.05 day21. The maximum nondimensional growth
rates begin to decrease for b less than 1.0e211 m21 s21.
This is most likely due to poor approximation of a semi-
infinite plane when the length scale, G/b, becomes very
large.

The parameter studies for 5-point resolution are
shown in Figs. 6 and 7. Figure 6 shows the nondimen-
sional growth rates when the zonal mean wind is in-
creased from 245 to 25 m s21. For a zonal mean wind
of 235 m s21, wave 7 is the most unstable wavenumber
for the 5-point as well as the 9-point resolution study.
For these values of the zonal wind, the reduction in
resolution stabilizes both the long waves and the short
waves. The nondimensional growth rates decrease as
the zonal wind at the jet is increased, becoming neutral
for a zonal wind of 220 m s21. Figure 7 is the 5-point
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FIG. 5. Nondimensional growth rates when b is increased from 1.0 3 10211 m21 s21

to 2.6 3 10211 m21 s21, from the model run using the staggered scheme for the 9-point
half jet with 1/D 5 20 days and u0 5 235 m s21.

b parameter study with the same parameters as Fig. 5.
The nondimensional wavenumber at which the maxi-
mum nondimensional growth rate occurs decreases as
b is increased. Increasing b stabilizes the shorter non-
dimensional wavenumbers.

The parameter studies using 3-point resolution are
shown in Figs. 8 and 9. Figure 8 shows the nondimen-
sional growth rates for the same parameters as Figs. 6
and 4, except zonal winds as strong as 265 m s21 are
considered to show the impact of the decreased reso-
lution more clearly. All nondimensional wavenumbers
greater than 1.4 or less than 0.5 have been stabilized.
The nondimensional growth rates at a zonal wind of
235 m s21 have been reduced by a factor of 2 compared
to the 5- and 9-point runs. The most unstable dimen-
sional wavenumber decreases from a wave 7 in the 5-
and 9-point runs to a wave 5 (figure not shown). All
waves become stable for u0 less than 230 m s21 in
magnitude. Figure 9 is the 3-point b parameter study
with the same parameters as Figs. 5 and 7. This figure
is consistent with the results of Fig. 8. Increasing b
stabilizes long and short waves, decreases the nondi-
mensional growth rates and causes all waves to become
stable for b greater than 2.1 3 10211 m21 s21.

The stabilization of the waves due to inadequate res-
olution, illustrated by the scaling analysis at the begin-
ning of this section, is typically thought to impact the
stability of the waves only at the critical zonal mean
wind. Figures 2–9 demonstrate that inadequate resolu-
tion impacts the stability of the waves for a large range

of values for the zonal mean winds at the vertex of the
jet and b. For example, Fig. 8 shows that the results
from the scaling analysis—that the most unstable wave
shifts to smaller wavenumbers and the growth rate of
the most unstable wave decreases as the potential vor-
ticity gradient at the jet decreases due to inadequate
resolution—impacts the stability of the waves for zonal
mean winds at the vertex of the jet up to 265 m s21,
even though the critical zonal mean wind is 230 m s21.

In all of the studies without dissipation, the critical
zonal wind for instability was the zonal wind at which
the potential vorticity gradient changed sign. For all
basic states that had a positive definite potential vorticity
gradient, the basic state was stable. For all basic states
with a change of sign in the potential vorticity gradient,
the basic state was unstable. This was not true for the
studies that had dissipation. When the potential vorticity
gradient changed sign, the basic state did not become
unstable. The magnitude of the potential vorticity gra-
dient that is needed to make the dissipative study un-
stable is supercritical relative to the nondissipative
study.

4. Wave–mean flow integration results

The wave–mean flow problem retains the nonlinear
terms that modify the mean flow while neglecting the
nonlinear terms that directly modify the waves. There-
fore, the waves can only act to modify themselves in-
directly through changes in the mean flow, since the
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TABLE 2. Channel-averaged wave enstrophy for G 5 1.4 3 1025

m s21, which corresponds to a zonal mean wind at the point of the
jet of 235 m s21.

n
(pt)

yc

(km)
^q9 &2

f

(10211 s22)

3
5
9

17

1875
2188
1719
1797

0.2
1.6
1.9
1.9

wave–mean flow system has no turbulent cascade of
energy and enstrophy due to wave–wave interactions.
Equation (1) is the equation that governs the waves. The
equation that governs the changes in the mean flow is

]q ]
1 (y9q9) 5 2D(q 2 q ), (14)0]t ]y

where q0 is the initial potential vorticity and q is the
zonally averaged potential vorticity. The D is the dis-
sipation time constant. The wave–mean flow integra-
tions are initialized with a small perturbation in waves
1–14. Only waves 5, 6, 8, 10, 12, 14 are retained in the
wave–mean flow integrations in order to illustrate the
impact of resolution on the wave–mean flow dynamics
and to allow for comparison with the results of Schoe-
berl and Lindzen (1984).

a. Limits on channel-averaged wave enstrophy

This section uses the results of Schoeberl and Lind-
zen (1984) to estimate the limits on the channel-av-
eraged wave enstrophy as a function of resolution for
the barotropic point jet problem. Schoeberl and Lind-
zen (1984) derived the limits on the channel-averaged
wave enstrophy in the nondissipative system. Using
conservation of enstrophy on constant pressure sur-
faces and assuming that the initial wave enstrophy is
equal to zero, the channel-averaged wave enstrophy in
the final state is

^ & 5 ^ & 2 ^ &,2 2 2q9 q qf i f (15)

where ^ & 5 L21 ( ) dy.L#0

The final state of the wave–mean flow system is as-
sumed to be defined by the Charney–Stern criterion for
instability. In the final state, the wave–mean flow in-
teractions have modified the mean flow such that all
mean potential vorticity gradients are greater than or
equal to zero. Following the work of Schoeberl and
Lindzen (1984), the mean flow is assumed to be mod-
ified to a distance, yc, from the jet maximum. For 0 #
y , yc, the mean potential vorticity is assumed to be
unchanged from the initial state. Therefore, yc is cal-
culated as the intersection between the initial and the
final mean potential vorticity. The final state that min-
imizes the adjustment to the mean flow, and maximizes
the channel-averaged wave enstrophy, is the state where
the mean potential vorticity is equal to zero for yc , y
, L; yc is then found to be equal to L 2 G/b. The
curvature of the jet in this final state is

2] uf
5 b. (16)

2]y

For this model the initial potential vorticity is

Dy
q 5 f 1 by 1 G, y # L 2 , (17)0 2

where f 0 1 by is equal to the Coriolis parameter. Letting

nc be the number of grid points from the point jet, at y
5 L, to yc,

G
n 5 0.5 1 , (18)c 1 2bDy

This gives an estimate of the channel-averaged wave
enstrophy for a given number of gridpoints, n,

2nc1 (2i 2 1)
2^q9 & 5 bDy 2 G , (19)Of 1 2[ ]n 2 1 2i51

where n is a given number of evenly spaced grid points
with a grid spacing of Dy. Table 2 lists the channel-
averaged wave enstrophy for G 5 1.4 3 1025 s21, which
corresponds to a zonal mean wind at the vertex of the
jet equal to 235 m s21.

The analytic limit derived by Schoeberl and Lindzen
(1984) for these parameters is

3G
2 211 22^q9 & 5 5 1.9 3 10 s . (20)f 3Lb

The analytic value for yc 5 G/b is 1763 km. Even though
the wave enstrophy at the jet increases when the reso-
lution is increased, due to the increase in the magnitude
of the jump in the meridional potential vorticity gradient
at the vertex of the jet, the channel-averaged wave en-
strophy is independent of resolution. This is because the
integrated jump in the potential vorticity gradients is
independent of the resolution. The 3-point calculation
for the channel-averaged wave enstrophy in the equil-
ibrated state is an order of magnitude smaller than the
analytic calculation. It is not clear how a model that
does not resolve yc well will adjust to neutrality. The
values for the channel-averaged wave enstrophy in the
wave–mean flow neutral state, in units of s22, are listed
in Table 3.

The values for the channel-averaged wave enstrophy
in the wave–mean flow neutral state, found by integra-
tion of (1) and (14), are shown in Table 3. Tables 2 and
3 together show that it is valid to assume that the initial
jet structure is adjusted to neutrality by reducing the
shear at the vertex of the jet such that the jump in the
potential vorticity gradients is removed. The 3-point
model is inadequate to resolve the channel-averaged
wave entrophy of the higher-resolution runs. This is
because the linear stability characteristics of the waves
are inadequately resolved in the 3-point model with a
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TABLE 3. Values of the channel-averaged wave enstrophy in the
wave–mean flow neutral state.

n
(pt)

^q9 &2
f

(10211 s22)

3
4
5
6
7
8
9

0.6
1.6
1.7
1.8
1.9
2.0
2.1

FIG. 10. The partitioning of the integrated wave enstrophy among waves 5, 6, 8, 10, 12, 14,
from the 9-point wave–mean flow half-jet model run without dissipation with u0 5 235 m s21,
1/D 5 0 days, and b 5 1.9e211 m21 s21.

zonal mean wind at the vertex of the jet equal to 235
m s21, as shown in Fig. 10 and discussed in section 3b.
Therefore, in this barotropic point jet problem, the ad-
equacy of a model set up to resolve the channel-aver-
aged wave–mean flow dynamics can be determined by
accessing whether the the linear stability characteristics
of the waves have been adequately resolved.

Figures 10, 11, and 12 show the partitioning of the
channel-averaged wave enstrophy among waves 5, 6, 8,
10, 12, 14 in an undissipated system. Figure 10 is for
a resolution of 9 points. All waves except wave 14 are
unstable initially. Waves 5, 6, and 8 grow the fastest
and modify the mean flow such that all of the waves
become stabilized at approximately the same time. Since
there is no exchange of energy or enstrophy among the
waves in the wave–mean flow integration, the enstrophy
of the waves changes very little after the waves have

become stabilized. Figure 10 shows that there is not an
equipartition of enstrophy in this neutral state. This is
because of the large differences in the growth rates of
the waves. An increase in resolution reduces this dif-
ference and causes the waves to grow at approximately
the same rate. Therefore, enstrophy is distributed more
equally as resolution is increased. Figure 11 shows the
results of the 5-point wave–mean flow integration. The
growth rates of waves 5, 6, and 8 are unaffected by the
reduction in the resolution. The shorter waves 10 and
12 have been stabilized by the reduction in resolution.
This is consistent with the stabilization of the shorter
waves in the linear parameter studies (Figs. 4, 6, 8) when
the resolution is decreased. Figure 12 shows the 3-point
wave–mean flow integration. Only wave 5 is unstable
for this resolution. The contribution to the channel-av-
eraged wave enstrophy by the other waves is negligible.
Figures 10, 11, and 12 are consistent with the linear
parameter study which showed that the most unstable
wave is shifted to longer wavelengths and the growth
rate of the most unstable wave, for u0 5 235 m s21

and b 5 1.9e211 m21 s21, is reduced by a factor of 2
when the resolution is decreased from 5 points to 3
points, while a decrease in resolution from 9 points to
5 points has little impact on either the wavelength of
the most unstable wave or the growth rate of the most
unstable wave (figure not shown).

Figures 13, 14, and 15 show the effect of adding
dissipation. It is seen that the most unstable wave decays



3810 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

F
IG

.
11

.
T

he
pa

rt
it

io
ni

ng
of

th
e

in
te

gr
at

ed
w

av
e

en
st

ro
ph

y
am

on
g

w
av

es
5,

6,
8,

10
,

12
,

14
,

fr
om

th
e

5-
po

in
t

w
av

e–
m

ea
n

fl
ow

ha
lf

-j
et

m
od

el
ru

n
w

it
ho

ut
di

ss
ip

at
io

n
w

it
h

u
0

5
2

35
m

s2
1
,

1/
D

5
0

da
ys

,
an

d
b

5
1.

9e
2

11
m

2
1

s2
1
.

F
IG

.
12

.
T

he
pa

rt
it

io
ni

ng
of

th
e

in
te

gr
at

ed
w

av
e

en
st

ro
ph

y
am

on
g

w
av

es
5,

6,
7,

8,
10

,
12

,
14

fr
om

th
e

3-
po

in
t

w
av

e–
m

ea
n

fl
ow

ha
lf

-j
et

m
od

el
ru

n
w

it
ho

ut
di

ss
ip

at
io

n
w

it
h

u
0

5
2

35
m

s2
1
,

1/
D

5
0

da
ys

,
an

d
b

5
1.

9e
2

11
m

2
1

s2
1
.



1 DECEMBER 2000 3811S O L O M O N A N D L I N D Z E N

F
IG

.
13

.
T

he
pa

rt
it

io
ni

ng
of

th
e

in
te

gr
at

ed
w

av
e

en
st

ro
ph

y
am

on
g

w
av

es
5,

6,
8,

10
,

12
,

14
fr

om
th

e
9-

po
in

t
w

av
e–

m
ea

n
fl

ow
ha

lf
-j

et
m

od
el

ru
n

w
it

h
a

di
ss

ip
at

io
n

ti
m

es
ca

le
of

60
da

ys
,

u
0

5
2

35
m

s2
1
,

an
d

b
5

1.
9e

2
11

m
2

1
s2

1
.

F
IG

.
14

.
T

he
pa

rt
it

io
ni

ng
of

th
e

in
te

gr
at

ed
w

av
e

en
st

ro
ph

y
am

on
g

w
av

es
5,

6,
8,

10
,

12
,

14
fr

om
th

e
9-

po
in

t
w

av
e–

m
ea

n
fl

ow
ha

lf
-j

et
m

od
el

ru
n

w
it

h
a

di
ss

ip
at

io
n

ti
m

es
ca

le
of

20
da

ys
,

u
0

5
2

35
m

s2
1
,

an
d

b
5

1.
9e

2
11

m
2

1
s2

1
.



3812 VOLUME 57J O U R N A L O F T H E A T M O S P H E R I C S C I E N C E S

FIG. 15. The partitioning of the integrated wave enstrophy among waves 5, 6, 8, 10,
12, 14 from the 5-point wave–mean flow half-jet model run with a dissipation timescale
of 20 days, u0 5 235 m s21, and b 5 1.9e211 m21 s21.

away with the higher wavenumbers. Wave 5 grows
slowly but becomes the dominant wave, even for a large
dissipation time constant of 60 days. Therefore it is not
only the growth rate of the waves that determines wheth-
er a wave will dissipate away.

When dissipation is added, the channel-averaged
wave enstrophy of the neutral state is reduced from 1.5
3 10211 s22 to 0.4 3 10211 s22. A comparison of Fig.
13 with Fig. 14 shows that this result is independent of
the magnitude of the dissipation. The insensitivity of
the channel-averaged wave enstrophy to the magnitude
of the dissipation was also found in Schoeberl and Lind-
zen (1984). These results were found to be true for the
5-point study, Fig. 15. The 3-point study had a similar
reduction of channel-averaged wave enstrophy, when
the dissipation was added.

b. Equilibrated states

The meridional gradient of the potential vorticity at
the jet is shown in Fig. 16a. The numbers in the legend
show the time-averaged potential vorticity gradients at
the jet for each of the runs. The 3- and 4-point runs are
both significantly supercritical relative to the higher-
resolution runs, while the potential vorticity gradients
from the 9- to 5-point models oscillate about the zero
gradient line, which is the neutral state predicted by the
Charney–Stern criterion. When dissipation is added to
the system, the magnitude of the oscillations decreases
and the equilibrated potential vorticity gradients become

supercritical with a magnitude of approximately 20.1b,
independent of resolution and the strength of the dis-
sipation (Fig. 17a). Considering the large differences in
the initial potential vorticity gradients at the jet, which
are shown at the beginning of the time series, the equil-
ibrated potential vorticity gradients appear to be quite
robust. Figures 16b and 16c show that the potential
vorticity flux convergence and potential vorticity flux
at the jet oscillate about the zero line with oscillations
of similar magnitude and timescales for all runs with
greater than 3 points. The 3-point run is seen to have
oscillations on a much longer timescale than the other
runs, but similar magnitude.

The time rate of change of the zonally averaged wave
enstrophy was derived by Schoeberl and Lindzen (1984)
to be

21 ](q9 ) ]q
25 2(y9q9) 2 D(q9 ). (21)

2 ]t ]y

If the time rate of change of the zonally averaged wave
enstrophy goes to zero, then the zonally averaged flux
of the perturbation potential vorticity down the gradient
of mean potential vorticity must balance the dissipation
of the zonally averaged wave enstrophy. An increase in
the zonally averaged wave enstrophy of the neutral state,
or a decrease in the dissipation time constant, must be
accompanied by either an increase in the magnitude of
the mean potential vorticity gradient or an increase in
the zonally averaged flux of perturbation potential vor-
ticity. If the system is dissipationless and the meridional
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TABLE 4. Wave–mean flow values at the jet, where u0 has been set
equal to 235 m s21 and D21 has been set equal to 20 days.

n
(pt)

y9q9
(1026 m s22)

]q /]y
(10212 m21 s21)

q92

(10212 s22)
Gf

(1026 s21)

3
4
5
6
7
8
9

0.6
1.9
2.0
2.1
2.1
2.2
2.2

21.4
20.4
20.7
21.0
21.2
21.3
21.3

1.3
1.2
2.2
3.2
3.9
4.3
4.6

12.8
8.1
6.2
5.0
4.2
4.1
3.2

TABLE 5. Critical shears and temperature gradients for the linear
baroclinic model, which have been calculated from the values of the
linear barotropic model in Table 1.

n
(pt)

uc

(m s21)
Gc

(1024 s21)
]uc /]y

(1023 K km21)

3
5
9

2.6
1.3
0.7

3.5
1.8
0.9

21.0
20.5
20.3

gradient of the potential vorticity is not equal to zero,
then the potential vorticity flux goes to zero as the time
rate of change of the wave enstrophy goes to zero.

Figure 17b shows the zonally averaged potential vor-
ticity flux convergence at the jet for the 3- to 9-point
model runs. This figure shows that, owing to the increase
in the potential vorticity gradient at the jet as resolution
is increased, the potential vorticity flux convergence
systematically increases as the resolution is increased.
Since the initial and final potential vorticity gradients
were shown to be independent of the strength of the
dissipation, the potential vorticity flux convergence de-
creases by a factor of 3 when the dissipation timescale
is increased by a factor of 3.

Figure 17c shows the zonally averaged flux of per-
turbation potential vorticity at the jet for the 9- to 3-point
resolution models with dissipation. This figure shows
that the potential vorticity flux at the jet is robust for
all runs with 4 points or more. The 3-point run has
potential vorticity flux at the jet that is a factor of 3
smaller than the potential vorticity flux at the jet for the
9- to 4-point resolution runs. This is consistent with the
underestimate of the channel-averaged enstrophy from
Table 3. Increasing the dissipation time constant by a
factor of 3 decreases the potential vorticity flux at the
jet by a factor of 3.

The relationships described above are illustrated in
Table 4. Table 4 lists the wave–mean flow values at the
jet, where u0 has been set equal to 235 m s21 and D21

has been set equal to 20 days. This table clearly shows
that the wave enstrophy and shear at the jet are a func-
tion of resolution. This table shows that the model equil-
ibrates to a state where the potential vorticity gradients
at the jet are independent of resolution. Assuming that
the equilibrated potential vorticity gradients at the jet
are robust and that the wave enstrophy at the jet de-
creases as the resolution is decreased, Eq. (21) indicates
that the potential vorticity flux at the jet will also de-
crease as the resolution is decreased. This relationship
is seen to break down in the 3-point model where the
underestimate in the magnitude of the potential vorticity
gradients is balanced by an increase in the potential
vorticity flux.

5. Baroclinic interpretation of barotropic results

The linearized barotropic jet is analogous to the lin-
earized Boussinesq Charney problem. Therefore, the re-
sults of the linear barotropic jet can be extended to the
linear Boussinesq Charney stability problem. These re-
sults are that the most unstable wavenumber will shift
to lower wavenumbers when the resolution is decreased.
The growth rates of the waves will decrease and the
shortwaves will become stabilized as the resolution is
decreased. The critical mean zonal wind for instability
will double when the resolution is reduced by half. A
reduction in resolution will stabilize the waves by in-
creasing the critical zonal mean wind for instability.

The barotropic problem assumes that the zonal wind
is symmetric about the vertex of the jet. This means
that the shear and the zonal mean potential vorticity are
equal to zero at the vertex of the jet. In the analogous
baroclinic problem the vertex of the jet corresponds to
the lower boundary. This lower boundary in the baro-
clinic problem represents the surface of the earth. The
meridional shear in the barotropic problem corresponds
to the vertical shear in the baroclinic problem. By the
thermal wind relation, the vertical shear is proportional
to the meridional temperature gradient. In the linear
Boussinesq Charney stability problem a delta function
in the potential vorticity gradients very close to the low-
er rigid boundary is equivalent to temperature gradients
along this rigid boundary, making this problem relevant
to the earth’s atmosphere. This classic result was first
pointed out by Bretherton (1966). The critical shear is
the shear necessary to eliminate the negative potential
vorticity gradients in the model and is expressed as

2bN H
G 5 . (22)c 2f (n 2 1)0

Here N 2 has been set equal to 1 3 1024 s22; f 0 is the
Coriolis parameter and is set equal to 1 3 1024 s21; H
is the vertical scale height of the troposphere and is set
equal to 7.4 km; n is the resolution of the model. The
critical zonal wind, assuming a constant initial shear, is
expressed as GcH. The critical shears and temperature
gradients for the linear baroclinic model that have been
calculated from the values of the linear barotropic model
in Table 1 are listed in Table 5.

The temperature gradient is calculated using the equa-
tion
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TABLE 6. Characteristics of the baroclinic equilibrium state cal-
culated from the values of the barotropic wave–mean flow neutral
state.

n
(pt)

y9q9
(1025 m s22)

Gf

(1024 s21)
]uc /]y

(1023 K km21)

3
4
5
6
7
8
9

0.7
2.1
2.3
2.5
2.5
2.6
2.6

3.7
2.3
1.8
1.5
1.2
1.2
0.9

21.1
20.6
20.5
20.5
20.4
20.4
20.3

]u f u ]u0 05 2 . (23)
]y g ]z

These temperature gradients correspond to a temper-
ature difference across a distance of 408: 24.6 K for n
5 3, 22.3 K for n 5 5, and 21.2 K for n 5 9. These
values are for an unforced and dissipationless model.
The continuous formulation of the point jet has no crit-
ical shear or critical temperature gradient. The critical
shear that is calculated in Table 5 is strictly due to the
truncation of the model. As the resolution is increased
the critical shear is reduced. For a resolution of 3 points,
which is equivalent to the two-level model, the critical
shear and critical temperature gradients can be of the
order of observed midlatitude surface shears and tem-
perature gradients. For example, observations (Peixoto
and Oort 1992) yield an annual mean temperature gra-
dient of 24 3 1023 K km21 and an annual mean zonal
wind shear of 7 3 1024 s21, for the Northern Hemi-
spheric mean at approximately 800 hPa.

The linearized barotropic jet is analogous to the lin-
earized Boussinesq Charney problem. This equivalence
does not hold when the nonlinear terms become large
enough to modify the mean state or when meridional
scales are introduced into the problem. Therefore the
barotropic wave–mean flow results can only be used to
suggest how resolution will modify the wave–mean flow
dynamics of the baroclinic problem.

The characteristics of the baroclinic equilibrium state
calculated from the values of the barotropic wave–mean
flow neutral state listed in Table 4, for D21 5 20 days,
are listed in Table 6, where

f0]/]y 5 2 ]/]z and (24)
N

2 2f L0y9q9 5 y9q9 . (25)baroclinic barotropic2 2N H

These results show that if the resolution is adequate to
resolve the analytic linear growth rates (model runs with
points greater than 5) then the potential vorticity gra-
dients and flux in the equilibrated state will be inde-
pendent of resolution. These robust potential vorticity
gradients at the jet result in shear and meridional tem-

perature gradients that increase in magnitude as the res-
olution decreases.

6. Summary

This study clearly shows that resolution can impact
in two ways the numerical simulation of barotropic in-
stability. The first impact is due to an increase in the
potential vorticity gradients at the jet when the reso-
lution is increased. It is found that this results in wave
enstrophy at the jet that increases as the resolution is
increased, even though the channel-averaged wave en-
strophy is shown to be conserved. Therefore, even
though the dynamics at the jet change as a function of
resolution, there are channel-averaged properties that
are conserved. This would not be true if a larger zonal
mean wind had been used in the wave–mean flow in-
tegrations since the 3-point integration becomes stable
for zonal mean winds less than 230 m s21 in magnitude.
When the resolution of the model is adequate to resolve
the linear analytic growth rates, the mean potential vor-
ticity structure and potential vorticity flux in the equil-
ibrated state are independent of resolution. This is con-
sistent with momentum fluxes and shear at the jet that
are dependent upon the resolution of the model.

The resolution of the model is also found to impact
the wave–mean flow equilibrated state when the linear
analytic growth rates are inadequately resolved. This
result is shown to be dependent upon the values of the
initial zonal mean wind at the jet and b. A linear pa-
rameter study demonstrates that not only is there a crit-
ical zonal mean wind for stability but there is a large
range of mean zonal winds and b where the growth
rates of the waves are underestimated because of in-
adequate resolution. For the values of the zonal mean
wind and b chosen for the wave–mean flow runs, the
dynamics of the 3-point model are clearly modified by
the inadequate resolution. It is found that the resolution
of the model has a significant impact on the partitioning
of the integrated wave enstrophy. It is shown that the
growth rates of both the long waves and the short waves
are reduced as the resolution is decreased, resulting in
integrated wave enstrophy that is not partitioned equally
among the waves.

This study also shows that there are many aspects of
the wave–mean flow dynamics that are independent of
resolution. Runs that had no dissipation equilibrate to
the state predicted by the Charney–Stern criterion; the
mean state was adjusted to eliminate the change of sign
in the initial potential vorticity gradients. Runs with
dissipation have equilibrated states that are supercritical
to the Charney–Stern criterion. These results are con-
sistent with previous studies of the barotropic point jet
(Schoeberl and Lindzen 1984; Schoeberl and Nielsen
1986). A reduction in resolution does not change the
basic result found by Schoeberl and Lindzen (1984) that
a basic state that is neutral to the most unstable wave
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and to wavelengths shorter than the most unstable wave
is still unstable to longer waves.

The impact of resolution on the numerical simulation
of barotropic instability can be directly extended to the
purely baroclinic problem due to the mathematic equiv-
alence between the barotropic easterly jet stability prob-
lem and the linear Boussinesq Charney problem (Lind-
zen et al. 1983). The impact of resolution on the wave–
mean flow equilibrated states in the barotropic problem
suggests that the wave–mean flow equilibrated states in
the baroclinic problem will also be dependent upon res-
olution. Using reasonable values for the initial zonal
mean wind and b and transforming meridional gradients
in the barotropic problem to be consistent with vertical
gradients in the baroclinic problem, the critical tem-
perature gradients and vertical shears for instability in
the two-level formulation of the model are found to be
of the order of observations. This result is purely a
function of the resolution and is thus fortuitous since
all vertical shears and temperature gradients are unstable
in the continuous problem.

This study has shown that coarse-resolution baro-
clinic models can be used to study wave–mean flow
dynamics, in a channel-averaged sense, if the linear sta-
bility characteristics of the waves are adequately re-
solved. This study further suggests that the adequacy of
these coarse-resolution models, used in studies such as
Stone and Branscome (1992), Zhou and Stone (1993),
and Held (1978b), can be determined by testing whether
the linear stability characteristics of the waves are re-
solved in each case.
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