
1. Introduction
First identified in the 1970s, the Madden-Julian Oscillation (MJO) is now recognized as the dominant mode 
of tropical intraseasonal variability (Madden & Julian, 1971). Characterized by anomalous precipitating deep 
convection and associated atmospheric circulation structures, the MJO propagates eastward along the equa-
tor with phase speeds of ∼5 m s −1. MJO events frequently initiate over the Indian Ocean and may persist for 
30–60 days (Zhang, 2005). Such events are most prevalent during boreal winter, although an analogous intra-
seasonal mode exhibiting more poleward propagation, the Boreal Summer Intraseasonal Oscillation (BSISO), 
occurs in boreal summer (Madden, 1986). While much progress has been made to advance understanding of the 
physics of the MJO, fundamental questions remain regarding its genesis, propagation, and seasonality, among 
other characteristics (Jiang et al., 2020).

The MJO is frequently described via indices derived from outgoing longwave radiation (OLR), winds, and/or 
rainfall as inputs (Schreck et al., 2013). Among the most widely used MJO indices is the real-time multivariate 
MJO (or RMM) index, first introduced by Wheeler and Hendon (2004). Although the precise details of the RMM 
calculation may differ, it is fundamentally based on joint empirical orthogonal function (EOF) analysis of OLR 
and upper and lower level zonal winds (u, at 200 and 850 mb, respectively), after some filtering to isolate intra-
seasonal band variability by removing the annual cycle and its harmonics, El Niño/Southern Oscillation (ENSO), 
and lower frequency variability. From this joint EOF, the two leading modes, accounting for a similar amount of 
explained variance and comprising a pair in quadrature, are identified as the MJO; these modes, conventionally 
referred to as RMM1 and RMM2, define the familiar 2D phase space used to index MJO amplitude and phase 
(see Figure 1 below).
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The present study addresses MJO identification through application of an operator-theoretic technique for dynam-
ical systems based on data-driven approximations of the Koopman operator. First introduced in the early 1930s 
(Koopman, 1931; Koopman & von Neumann, 1932), operator-theoretic approaches study dynamical systems 
through their induced action on spaces of observables, that is, functions of the state that represent physical quan-
tities that can be measured or observed. A key observation of Koopman (1931) was that a general (nonlinear) 
dynamical system acts on such spaces by means of intrinsically linear transformations, which have since come 
to be known as Koopman operators. This perspective enables the use of linear operator theory to study nonlinear 
dynamics, with the Koopman operator's spectral decomposition fully characterizing the evolution of observables 
under the nonlinear system. Closely related to Koopman operator techniques are methods based on the transfer 
operator, which is the adjoint of the Koopman operator acting on spaces of measures (e.g., probability densities).

In recent years, there has been considerable interest in developing data analysis and forecasting techniques based 
on Koopman and transfer operators (Brunton et  al., 2022; Dellnitz & Junge, 1999; Mezić, 2005), which aim 
to provide more dynamically relevant and physically interpretable results than dynamics-agnostic techniques 
such as EOF analysis. Applications of operator-theoretic approaches to climate dynamics include identification 
(Froyland et al., 2021) (hereafter, F21) and forecasting (Navarra et al., 2021; Wang et al., 2020) of ENSO, fore-
casting of sea ice concentration (Hogg et al., 2020), and analysis of tropical convective variability on diurnal to 
seasonal timescales (Giannakis et al., 2015).

The data-driven Koopman framework employed in this work (Berry et al., 2020) leverages kernel methods for 
machine learning to build approximations of the Koopman operator from time series data and to obtain knowl-
edge of the underlying dynamics that govern the evolution of observables. Eigendecomposition of the approx-
imate Koopman operator yields a set of eigenfunctions {zk} that exhibit some properties rendering them useful 
for diagnosing and interpreting propagating, (quasi)periodic climate signals, as we illustrate below in the context 
of the MJO.

2. Methods and Data
The Koopman operator U t can be thought of as evolving an observable from a given time to a time t later, that is, 
for an observable f that is a function of the dynamical state x at a given time:

𝑈𝑈𝑡𝑡𝑓𝑓 (𝑥𝑥) = 𝑓𝑓
(

Φ𝑡𝑡𝑥𝑥
)

 (1)

where Φ t represents the flow map along which the system evolves in continuous time. The infinitesimal generator 
of the Koopman operator, V, is defined such that

� � = lim
� → 0

��� − �
�

 (2)

In the present study, we seek to construct and solve an eigenvalue equation for V, namely, Vzk = iωkzk, where 
zk(x) is a complex-valued eigenfunction and ωk is a real eigenfrequency that represents a characteristic timescale 
associated with the eigenfunction. Further information about the methodology is presented in the Supporting 
Information S1 (Text S1).

There are several properties of the Koopman eigenfunctions that render them ideal for the description of quasipe-
riodic, recurrent climate phenomena like the MJO. First and foremost, the appearance of complex pairs of eigen-
functions in the Koopman spectrum directly indicates cyclic behavior, with eigenvalues corresponding to cycle 
periodicity. Although paired (“in quadrature”) EOFs emerge in the standard RMM depiction of the MJO, as 
Roundy  (2015) notes, it is possible that EOFs fail to identify cyclic behavior if modes reflect very different 
amounts of variance. In this regard, we note that the leading two EOFs of Pacific region interannual sea surface 
temperature variability exhibit unequal amounts of variance (>50% for mode 1 vs. ∼10% for mode 2), which may 
be interpreted as reflecting distinct behavior (Ashok et al., 2007). On the other hand, these EOF modes appear to 
be captured by a single Koopman eigenfunction (Pike, 2022).

As F21 point out, two further properties inherent to Koopman eigenmodes, dynamical rectification and phase equi-
variance, may facilitate interpretation. Essentially, dynamical rectification refers to a representation of an oscil-
latory process in analogy to simple harmonic oscillation. In more detail, the time series zk(t) ≡ zk(x(t)) obtained 
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by sampling a Koopman eigenfunction zk along the trajectory evolves as a complex phase with fixed  oscillatory 
frequency ωk, that is,

𝑧𝑧𝑘𝑘(𝑡𝑡) = 𝑧𝑧𝑘𝑘(0)𝑒𝑒
𝑖𝑖𝑖𝑖𝑘𝑘𝑡𝑡 (3)

This property holds even if the state-space process evolves at a variable frequency (see Figure 4 in  F21 for 
an example). Even when the underlying flow 𝐴𝐴 Φ𝑡𝑡 is chaotic, the leading Koopman eigenfunctions are adept at 
identifying approximately cyclical observables that remain correlated on timescales significantly longer than 
the Lyapunov timescale of the system. In such cases, Equation 3 holds approximately, and 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) may exhibit 
amplitude and/or phase modulation (e.g., F21, Figures 2 and 5). Phase equivariance relates to partitioning of the 
complex plane into angular sectors (“wedges”) which identify phases of the cycle associated with 𝐴𝐴 𝐴𝐴𝑘𝑘 that evolve 
compatibly with the dynamics. For a partitioning of a cycle of frequency 𝐴𝐴 𝐴𝐴𝑘𝑘 into 𝐴𝐴 𝐴𝐴 phases, evolving the samples 
belonging in a given phase over a time interval 𝐴𝐴 2𝜋𝜋∕𝑆𝑆𝑆𝑆𝑘𝑘 should consistently map them into the next phase. The 
fact that 𝐴𝐴 𝐴𝐴𝑘𝑘 evolves at a constant frequency 𝐴𝐴 𝐴𝐴𝑘𝑘 means that phase equivariance can simply be obtained by choosing 
the wedges to have equal angular extent. This facilitates the construction of phase composites while aiding phase 
predictability.

Because we have discrete, rather than continuous, observations, we can only approximate the solution of the 
Koopman generator defined in the limit of Equation 2. We therefore follow an approach in which we first apply 
nonlinear Laplacian spectral analysis (NLSA) (Giannakis & Majda,  2012) to the input data. In this step, we 
construct and solve a kernel eigenvalue problem that approximates the eigenfunctions of the Laplace-Beltrami 
operator on the nonlinear manifold sampled by the data. The set of leading L NLSA eigenfunctions, which we 
denote as 𝐴𝐴 {𝜙𝜙1, . . . , 𝜙𝜙𝐿𝐿} , can be thought of as nonlinear principal components which may be used to represent 
the generator V by an L × L matrix (Section 2 in Text S1 in Supporting Information S1). Solving the eigenvalue 
problem for this matrix yields the eigenfrequencies ωk as the imaginary part of the eigenvalues of the generator 
matrix and the corresponding Koopman eigenfunctions as linear combinations of the NLSA basis functions, that 
is, �� =

∑

� ����� , where the expansion coefficients cjk are determined from the eigenvectors of the generator 
matrix (Section 3 in Text S1 in Supporting Information S1). We order the zk in decreasing order of the real parts γk 
of the corresponding eigenvalues; by construction of our generator approximation, the γk are non-positive, which 
means that the eigenfunctions are arranged in decreasing order of decorrelation timescale under the dynamics 
induced by the approximate generator. Analogously to extended EOF (EEOF) analysis or singular spectrum anal-
ysis (SSA) (Ghil et al., 2002), NLSA operates on delay-embedded sequences of data snapshots (Section 1 in Text 
S1 in Supporting Information S1). This results in basis functions ϕj that span approximately invariant subspaces 

Figure 1. 2D phase spaces for the standard realtime multivariate Madden-Julian Oscillation (RMM) (left) and Koopman RMM (right). Two example Madden-Julian 
Oscillation events are highlighted: 16 October to 15 November 2011 (yellow) and 1–to 30 March 2015 (green), with the initial date denoted by a cross and the final date 
by a circle.
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under the Koopman operator (Giannakis, 2021), which may be exploited to mitigate numerical errors arising 
from approximation of the Koopman generator.

Several parameters are introduced in the numerical solution of the Koopman generator eigenvalue problem. 
Two of the notable parameters are embedding length and nearest neighbors. Embedding length refers to inputs 
comprising temporal sequences of data, that is, each available instance in a space time field of input data is 
expanded to a sequence equal to the embedding length. The underlying idea here is that the dynamics should 
induce some “regularity” that is captured by such time sequences, although in principle, results should be asymp-
totically independent of embedding length. The nearest neighbors parameter is applied to the NLSA kernel as 
an effective weighting factor to account for local similarity in inputs (see Section 2 in Text S1 in Supporting 
Information S1). A well-tuned kernel should balance between locality (rate of decay), which improves the quality 
of the corresponding eigenfunctions ϕj, and robustness against sampling errors (which decreases with increasing 
kernel locality at a fixed number of samples). To define parameters appropriate for solution of the Koopman 
generator on the RMM input, we leverage insights from the prior NLSA analysis of brightness temperature 
of Székely et al. (2016) and Tung et al. (2014). In particular, we choose an embedding length of 64 days and 
a nearest neighbors value of approximately 20% of the input samples. While there is some sensitivity to these 
parameter choices, similar qualitative behavior is captured over a broad range of parameter values. See Section 
4 in Text S1 in Supporting Information S1 for further details on parameter selection and Table S1 in Supporting 
Information S1 for a listing of the parameter values employed in the Koopman MJO analysis described below.

We also consider application of EEOF analysis performed on sequences of 64 days. In contrast to conventional 
EOF analysis, which is insensitive to sequencing (i.e., the same spatial patterns would be obtained for an input 
dataset under permutation of the time sequencing), EEOFs inherit some information about the temporal evolu-
tion. Indeed, we include here some results of EEOF analysis as a bridge between the standard RMM results and 
those obtained from the Koopman generator.

We analyze here daily interpolated National Oceanic and Atmospheric Administration OLR (Liebmann & 
Smith, 1996) along with ERA5 (Hersbach et al., 2020) zonal winds at 200 and 850mb winds. All input data are 
first regridded to a common 2.5° × 2.5° grid and meridionally averaged over 15°S–15°N.

3. Results and Discussion
Among the first 20 RMM Koopman eigenfunctions, there appear four pairs with periods in the intraseasonal band 
(see Table S2 in Supporting Information S1). In what follows, we focus on the first pair of these intraseasonal 
eigenfunctions, which we will demonstrate possess characteristics consistent with the MJO. The eigenperiod for 
the leading intraseasonal mode is 49.8 days; using ERA5 OLR, the corresponding eigenfunction pair exhibits a 
slightly longer eigenperiod (52.5 days). Varying the length of the embedding window over a range of 45–180 days 
(not shown) indicates stability of the mode behavior, with the estimated eigenperiod varying by only ∼2 days over 
this range of embedding lengths.

Figure 1 depicts the 2D phase space representation of RMM index, with RMM2 on the vertical axis against 
RMM1 on the horizontal axis. For comparison, we also present the phase space formed by the real and imagi-
nary components of the Koopman RMM eigenfunction, where we have first rotated the eigenfunction through 
multiplication by a phase e iα, where the phase angle α is chosen such that covariance of the rotated Koopman 
RMM eigenfunction with respect to RMM1 and RMM2 (written in complex notation as RMM1 + iRMM2) is 
maximized. Further details on this procedure can be found in Text S2 in Supporting Information S1. In essence, 
the rotation aligns the real and imaginary components of the Koopman RMM eigenfunction with RMM1 and 
RMM2, respectively. Upon rotation, the real and imaginary components of the Koopman RMM mode exhibit 
a moderate, but statistically significant (according to a two-tailed Student t-test), correlation with RMM1 and 
RMM2 (Pearson r values of 0.57 and 0.62, respectively). Note that the (rotated) Koopman RMM1 and RMM2, 
like the standard RMM1 and RMM2, are normalized to unit variance. Two MJO events, one that occurred during 
the CINDY/DYNAMO field campaign from mid-October 2011 to mid-November 2011 (Kikuchi et al., 2018) and 
another with record setting RMM amplitude that occurred in March 2015 (Marshall et al., 2016), are highlighted.

As in the standard RMM, MJO propagation is represented by counterclockwise motion around the Koopman 
RMM 2D phase space. Qualitatively, the phase space for the Koopman RMM exhibits a smoother appearance 
than the standard RMM, which as we discuss further below may be partially attributed to the use of delay 
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embedding. For the two example MJO events, both the standard RMM and Koopman RMM phase progressions 
broadly agree, but the evolution of the standard RMM depiction is more irregular, with more significant radial 
motions evident. In the results that follow, we explore this phase space behavior more fully, but for now we note 
that the smoother phase space orbits inherent in the Koopman RMM may imply greater predictive skill. F21 
recently demonstrated analogous behavior comparing a Koopman generator-based 2D phase space for ENSO to 
that of a conventional ENSO index (NINO3.4) plotted against itself with a lag corresponding to the characteristic 
timescale of the Koopman ENSO eigenmode.

Figure 2a illustrates the power spectra of the standard RMM1 with its optimally rotated Koopman RMM counter-
part. While the power spectrum of RMM1 exhibits somewhat higher amplitude at intraseasonal frequencies, the 
intraseasonal peak is more pronounced in the corresponding Koopman mode. In other words, the Koopman mode 
more clearly distinguishes the intraseasonal behavior from other timescales. At higher frequencies, the Koopman 
mode appears to share much of the timescale separation relative to the standard RMM with the underlying NLSA 
eigenfunctions onto which it projects (not shown). However, at lower frequencies, the Koopman eigenfunctions 
exhibit lower amplitude and spectral power than their NLSA analogs, from which we conclude that the Koopman 
operator approach accounts for at least part of the clearer intraseasonal behavior evident in Figure 2a.

Amplitudes for the standard and Koopman RMM modes for a 5-year period spanning 1 January 2010 to 31 Decem-
ber 2015 are depicted in Figure 2b. The EEOF version of RMM is included here for comparison, specifically to 
assess how application of embedding in an EOF framework can impact amplitude smoothness. Like the Koopman 
RMM amplitude, the EEOF RMM amplitude is also smoother than the standard RMM, underscoring that time 
sequence inputs serve to filter resultant behavior. On the other hand, the Koopman RMM amplitude reflects a 
more seasonal amplitude modulation than is associated with either the standard or the EEOF RMM indices: in 
particular, Koopman RMM amplitudes are larger during boreal winter than during boreal summer. The seasonal 
amplitude modulation appears to depend on the choice of nearest neighbor parameter. Indeed, with larger nearest 
neighbor parameter values, which less strongly localize the NLSA kernel, the seasonality of the Koopman RMM 
is diminished. (For further discussion of this point, please see Section 4 in Text S1 in Supporting Information S1).

To further demonstrate that the Koopman RMM mode captures MJO characteristics, we consider the eigenfunc-
tions projected onto the embedded input data. The resultant projections for the Koopman counterpart of RMM1, 
as a function of longitude and embedding time, are illustrated in Figure 3 for OLR, u850mb, and u200mb (filled 
contours). For comparison, we have also included projections based on lagged regression of RMM1 onto the 
input data (line contours).

For each field, eastward phase propagation is clearly evident, particularly over longitudes corresponding to the east-
ern Indian Ocean through western Pacific. Here, the estimated propagation speed is ∼4.5 m s −1, which is in agree-
ment with previously reported values (Chen & Wang, 2020). While the signal in OLR (Figure 3c) is largely confined 
to the eastern Indian Ocean-western Pacific, the signal in both lower and upper level zonal winds (Figures 3a and 3b, 
respectively) is seen to extend further eastward. Interestingly, the estimated phase speed based on the zonal wind 
component (especially for 850 mb) increases moving into the Central and Eastern Pacific. Since the thermody-
namic conditions over the Central and Eastern Pacific are less favorable to precipitating deep convection, convective 
coupling in the MJO is expected to weaken (Adames & Kim, 2016). With a reduction in latent heating, simple 
theories of equatorial wave propagation suggest increased phase speed, which is consistent with what is seen here.

For a perfectly coherent propagation, as in a mode characterized by sinusoidal oscillation, the 2D phase orbits 
would lie on a circle. To compare the coherence of the standard and Koopman RMM representations of the MJO, 
we compute the autocorrelations and cross-correlations of the components of the 2D phase space, for lags of up 
to 48 days. Figure 4 illustrates the resultant scatterplot of these lagged correlations, along with a reference unit 
circle of a sinusoidal oscillation. Note that each scatterplot consists of two branches, depending on whether the 
first component leads or lags the second.

While both the Koopman and standard RMM correlations decrease with increasing lag, as expected, the compo-
nents of the Koopman RMM (blue) lose coherence more slowly than do RMM1 and RMM2 (black), that is, the 
Koopman component correlation curve remains closer to the reference unit circle. It is also worth noting that 
Koopman RMM component autocorrelations and cross-correlations tend to exceed those for the EEOF version 
of RMM (red), so it is not simply the smoothing introduced by embedding that enhances cycle coherence. Inter-
estingly, the two branches of the EEOF are visibly asymmetric, meaning that one component is more strongly 
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Figure 2. (a) Power spectral densities for the standard realtime multivariate Madden-Julian Oscillation (RMM) (black) and 
Koopman RMM (blue). The gray shading delimits the 30–90-day intraseasonal band. (b) Amplitudes for RMM (black), 
extended empirical orthogonal function (EEOF) RMM (red), and Koopman RMM (blue) over the period 1 January 2010 to 
31 December 2015. The amplitudes are dimensionless and reflect normalization of the standard RMM components (or their 
EEOF and Koopman analogs) to unit variance, with offsets introduced for visual clarity (i.e., dashed lines denote the zeros of 
EEOF and Koopman RMM amplitudes). Amplitudes during two example Madden-Julian Oscillation events are highlighted: 
16 October to 15 November 2011 (yellow) and 1–30 March 2015 (green).
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autocorrelated than the other. Although the source of this asymmetry is unclear, the more symmetric Koopman 
behavior is consistent with the rectification introduced by Koopman, as discussed in Froyland et al. (2021).

For further insight into the potential relevance of our results to MJO predictability, we briefly compare the phase 
progression of the standard and Koopman RMM indices. Conventionally, MJO phases are reported in terms of 
index values ranging from 1 to 8, depending on where (in longitude) the active center of the MJO is located at a 
given time (Wheeler & Hendon, 2004); these 8 phases map onto 45° wedges in the 2D RMM phase space. Note 
that for a point in the RMM phase to be considered as part of an MJO event, it is subject to the condition that its 
amplitude equal or exceed unity.

As explained in Section 2, if the mean orbit over the phase space for an MJO event occurs over a time T, we would 
expect progression from a given MJO phase to the subsequent one to occur after ∼T/8. In the analysis here, we 
first identify all points in the standard and Koopman RMM phase spaces at or above the event amplitude thresh-
old, grouped by the phase index. We then determine where in the phase spaces these points are located 6 days 
later, that is, ∼1/8 of the Koopman RMM eigenperiod. If a point continues to exceed the amplitude threshold and 
it is in the next phase, we assign a value of 1 to the initial point; otherwise, we assign a value of 0. Essentially, 
we are using the expected phase progression from an initial point to predict the phase space location 6 days later, 
subject to amplitude remaining above a threshold (i.e., the event persists after 6 days).

Following application of the method above, the binary index is averaged over all phases to yield a mean percent-
age of event progression from one phase to the next. For the standard RMM, on average, we find that ∼38% of the 

Figure 3. Projections of Koopman RMM1 (filled contours) onto (a) 850 mb zonal wind (in units of m s −1), (b) 200 mb zonal wind (in units of m s −1), and (c) outgoing 
longwave radiation (in units of W m −2). Line contours are the same projections but for the standard RMM1.
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initial points “arrive” at the expected (target) phase after 6 days. By contrast, 
for the Koopman RMM, nearly twice the percentage of initial points (71%) 
appear in the target phase at day 6. While we suggest that this result impli-
cates greater predictability inherent to the Koopman RMM, some important 
caveats should be mentioned. First, the selection of timescale here is based 
on a mean event cycle, but known event to event differences in MJO dura-
tion or propagation speed (Chen & Wang,  2020) would impact the phase 
progression for different events. By mathematical construction, as we have 
noted, the Koopman eigenfunctions exhibit more regularity in this regard. 
Our quick sensitivity assessment by varying the timescale for expected phase 
progression demonstrates that the Koopman-based RMM maintains a higher 
percentage of points reaching the target phase over 1–10 days compared to 
the standard RMM.

A further caveat is that use of the same event amplitude threshold for both 
the standard and Koopman RMM yields a larger number of initial points 
for the standard RMM. This arises in part as a consequence of the seasonal 
amplitude modulation of the Koopman eigenfunctions, which leads to a more 
leptokurtic distribution of values relative to RMM1/RMM2 (which are effec-
tively Gaussian-distributed). However, variation of the event threshold, for 
example, by using a higher value for the standard RMM and/or a lower value 
for Koopman, does not appear to alter the results qualitatively, as the mean 
progression of Koopman RMM to the target phase continues to exceed the 
standard RMM over a wide range of thresholds.

4. Summary and Conclusions
In this study, we illustrate the application of an operator-theoretic formalism, 
the Koopman operator (or its infinitesimal generator), as a basis for obtaining 

a representation of the MJO analogous to the widely-used, EOF-based RMM. Our results demonstrate that the 
Koopman RMM manifests comparable behavior to the standard RMM in terms of MJO event identification, 
propagation, and large-scale spatial structure. Relative to the standard RMM, the Koopman RMM captures a 
more seasonally-modulated MJO amplitude peaking in boreal winter. Numerically, this seasonality appears to 
largely depend on the locality of the kernel employed for operator approximation (achieved here via nearest 
neighbor truncation), which aides in constraining events based on similarity.

Like the standard RMM, the Koopman RMM can be updated in (near) real-time. That is, continuously updated 
sequences of daily anomalies of OLR and upper and lower level zonal winds equal to the embedding length can be 
projected onto the optimally rotated spatial patterns (as in Figure 3) to obtain index values for Koopman RMM1 
and RMM2. For example, for an embedding length of 64 days, updating for a 1-day forecast would require the 
preceding 63 days (Sabeerali et al., 2017). In principle, it is possible to employ a continuously updated Koopman 
RMM as a diagnostic for operational model forecast evaluation (Gottschalck et al., 2010); however, a long embed-
ding length means that the index values will largely reflect phenomena that decorrelate on timescales comparable 
to the embedding window, and thus may not well represent daily-scale events. On the other hand, the Koopman 
RMM yields a more coherent and persistent MJO depiction compared to the standard RMM, or for that matter, 
a smooth (EEOF) version thereof. In this sense, there may be greater predictability inherent to the MJO than is 
inferred by the standard RMM approach, although whether such predictability could be realized as enhanced 
forecast skill warrants further exploration. Finally, one potentially desirable feature of the Koopman approach is 
that it yields a single explicit timescale (an eigenperiod) that we suggest could be useful as simple benchmarking 
metric for multimodel evaluation of MJO simulation. To the extent that this timescale varies within an ensemble 
of models, it may have some utility as a basis for grouping models to aide in evaluation of process or parameter 
sensitivity or diagnosis of model bias (Waliser et al., 2009).

Figure 4. Scatterplots of auto versus cross-correlations for the components of 
the standard realtime multivariate MJO (RMM) (black), extended empirical 
orthogonal function RMM (red), and Koopman RMM (blue). Here, lags of 
up to 48 days are included. For reference, the dashed curve depicts a unit 
circle, which would correspond to the auto versus cross-correlation of a purely 
sinusoidal mode.
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Data Availability Statement
The data analyzed in this study may be obtained through the following links: https://www.psl.noaa.gov/data/ 
gridded/data.olrcdr.interp.html, https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels? 
tab=overview.
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