
Conditioning Event 
Occurrence 

 
Martin Hoerling 
NOAA Earth System Research Laboratory 
12 September 2012 



2 

Conditioning Event Occurrence 

In probability theory, the conditional probability of  A given B is the  
probability of  A if  B is known to occur (or have occurred). 

PB(A) = P(A⋂B)/P(B) 

Conditional probability is so named because the ultimate chance of A occurring is 
conditioned on B occurring, with the practical notion (for predictive understanding) that B 

occurs first. 

At the Core of Event Attribution Science 
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Conditional Risk 
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Fig. 5. Quantile regression analysis and relative frequency distribution for Texas. (A) Scatter plots of ERA-Interim NHD in hottest month of respective year and
3-month SPI in preceding month averaged over Texas region (black square in Fig. 1B) with regression slopes (10th, 30th, 50th, 70th, and 90th percentiles) as an
example for a region with strong coupling as defined in Fig. 1. The SPI in (A) is calculated from ERA-Interim precipitation data (includes 2011, indicated with a
circle). (B) Relative frequency distribution of NHD for all, dry and wet years, including indication of median (3 vertical dashed lines) and 90th percentile values
(3 vertical dotted lines).

Fig. 4. Hot day occurrence probability after dry versus wet conditions. Occurrence probability for above-average number of hot days in the respective hottest
month of each year following low 3-month SPI values (dry conditions, A) and high 3-month SPI values (wet conditions, B), and difference between the two (C).
Values are given in percentage of years with above-average NHD from total number of low and high SPI years, respectively. Values that are based on a
composite of less than 4 years are not shown (white areas). The employed datasets are ERA-Interim for NHD and CRU for SPI.
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Summer Hot Days Conditioned by Antecedent Rainfall 

Mueller and Seneviratne 2012, PNAS 

Land Surface Conditioning of Event Occurrence 
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Summer Mean Temperature Conditioned by Drought 

Hoerling et al. 2012, JClimate 
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18 February 1963) on Texas climate would have been 
greatly reduced by 1967 (Robock 2000).

A spatial, weighted average was calculated from 
the 27 GCM grid boxes that fell within Texas, with 
weights proportional to the cosine of the latitude. 
Surface air temperature and cumulative precipitation 
were also averaged over MAMJJA and JJA and the 
return period for each value from each ensemble 
member was calculated. Totals of 171, 1464, 522, and 
1087 ensemble members were analyzed for 1964, 
1967, 1968, and 2008, respectively. We attempted no 
model bias correction because our objective was to 
examine changes in the entire modeled probability 
distribution between the 1960s and 2008, and not 
to estimate the actual return period of the 2011 heat 
wave in a nonstationary setting.

Results. The GCM captured the inverse correlation 
between temperature and precipitation that is evi-
dent in the observations (Fig. 8), though the model 
in general generated a climate that was too dry and 
too warm. Between 1964 and 2008, the simulated 
ensembles show shifts towards warmer and slightly 
drier conditions (Fig. 8). The relationship is similar 
between 1967–68 and 2008 (not shown).

The return period for a given low precipitation 
event was slightly longer for the years in the 1960s 
than for 2008 (Fig. 9, top; e.g., a simulated 100-yr 
return period MAMJJA precipitation under 1964 
conditions has a 25-yr return period under 2008 con-
ditions). This may indicate an increased contribution 
of precipitation deficit to drought conditions in 2008, 
but larger sample sizes and a more in depth analysis 
including looking at other years are required before 
firmer conclusions can be drawn. 

For extreme heat events, the difference between 
the years in the 1960s and 2008 was much more 
pronounced, with the return period of a particular 
extreme heat event being more than an order of 
magnitude shorter for 2008 than for any of the 3 years 
from the 1960s (Fig. 9, lower panel). As an example, 
100-yr return period MAMJJA and JJA heat events 
under 1964 conditions had only 5- and 6-yr return 
periods, respectively, under 2008 conditions.

Conclusions. We are assessing how the combined 
impact of changing atmospheric composition 
and surface temperatures have affected the risk of 
extreme hot and dry conditions in Texas: since most 
of the large-scale warming that has occurred over 
the past 50 years is thought to be attributable to the 
anthropogenic increase in greenhouse gas levels, this 
provides one component of a multistep attribution 

process (Hegerl et al. 2010) relating the 2011 event to 
human influence.

We found that extreme heat events were roughly 
20 times more likely in 2008 than in other La Niña 
years in the 1960s and indications of an increase in 
frequency of low seasonal precipitation totals. With 
2008 serving as our proxy for 2011, this suggests that 
conditions leading to droughts such as the one that 

FIG. 8. Texas mean temperature against total precipita-
tion for (top) MAMJJA and (bottom) JJA from NCDC 
and the HadAM3P ensembles. The observed years 
1964, 1967, and 1968 are highlighted by the magenta 
triangles, and the observed years 2008 and 2011 are 
highlighted by the magenta square and diamond, 
respectively. To facilitate comparison between model 
years, only a random sample of the HadAM3P 2008 
dataset, equal in size to the 1964 dataset, is shown.

1053JULY 2012AMERICAN METEOROLOGICAL SOCIETY |

Model Biases : Implications for Event Attribution 

Texas SfcT vs Total Pcpn in JJA 

Rupp et al. 2012, BAMS:  Fig. 8 
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FIG. 12. As in Fig. 11, except for Texas spring temperatures. FIG. 13. As in Fig. 11, except for Washington spring temperatures.

generally show less secular variability between the first
and second 50-yr periods than the t-test results. This
may reflect a relatively greater sensitivity of the t-test
results to variations in sample statistics (e.g., sample
mean and standard deviation). For example, results for
the 50-yr periods indicate that a few outliers can sig-
nificantly reduce t-test values. However, the 50-yr sup-
pressed risk results also can be strongly affected by
outliers.
For some regions, under specific ENSO conditions

one to three seasons in advance, very large shifts occur
in the comparative risks of very warm seasons versus
very cold seasons, sometimes changing comparative ra-
tios from the unconditional value of 1:1 to 10:1 or more.
This suggests that, at least in these regions, probabilistic
forecasts of seasonal temperature extremes are feasible.
Such predictions may have useful applications in a va-
riety of sectors, for example, energy and utilities. Fur-
ther work will be required to determine if increased skill
in predicting seasonal extremes may be obtained

through additional empirical predictors or through com-
bined use with model forecasts.

Acknowledgments. Support for this research was pro-
vided through the NOAA Office of Global Programs.
Kriste Paine (formerly of CDC) helped with initial pro-
cessing and early analyses. Craig Anderson deserves
thanks for digitizing the U.S. map used here. Discus-
sions with Joe Barsugli, Marty Hoerling, Brant Lieb-
mann, Prashant Sardeshmukh, and Jeff Whitaker (all at
CDC) are gratefully acknowledged.

APPENDIX A
Construction of Seasonal SOI Time Series

Monthly SOI time series as defined by Troup (1965)
were initally obtained on the Web at http://
www.dnr.qld.gov.au/longpdk/lpsoidat.htm. This time
series is serially complete for January 1900 through the
present (July 1999). It is calculated based on the anom-

Wolter et al. 1999, JClimate 

Extreme Quintile Seasonal Temperature Conditioned by ENSO 
  

SST Conditioning of Event Occurrence 
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in the first decade of the twenty-first 
century have yet been performed 
(exceptions include Morak, et al. 
(2011, 2012, manuscript submitted 
to J. Climate), who detect anthro-
pogenic influence in the frequency 
of occurrence of temperature ex-
tremes in data that extend to 2005]. 
However, studies of changes in 
extremes that include more recent 
observations show that ongoing 
changes in temperature extremes 
are regionally consistent with those 
observed in the latter half of the 
twentieth century. Examples include 
studies of the frequencies of warm 
and cold days and nights in North 
America (Peterson et al. 2008); 
the frequency of record breaking 
temperatures in the United States 
(Meehl et al. 2009); and the fre-
quency of temperature extremes in 

multiple regions globally (Morak et al. 2011, 2012, 
manuscript submitted to J. Climate). Results from 
recent studies of precipitation extremes are more 
mixed. Some studies do show changes consistent 

FIG. 2. Time series of five-year mean area-averaged PI (as defined in 
Fig. 1) anomalies (%) for 1-day annual extreme precipitation anoma-
lies over Northern Hemisphere land during 1951–99. Black solid line 
represents observations and the dashed line represents the multi-
model mean for the models indicated in the legend. Model simula-
tions were run with anthropogenic forcings. Colored lines indicate 
results for individual model averages [see Supplementary Table 1 
of Min et al. (2011) for the list of climate model simulations and 
Supplementary Fig. 2 of Min et al. (2011) for time series of individual 
simulations]. Each time series is represented as anomalies with 
respect to its 1951–99 mean.

2 See Mastrandrea et al. (2010) for a description of IPCC confidence language used in the IPCC Fifth Assessment, including 
the Special Report on Extremes (Field et al. 2012).

FIG. 3. Impact of (left) El Niño and (right) La Niña on the intensity of the largest 1-day precipitation event 
monthly in the November–April half of the year. Based on station data from the Global Historical Climatology 
Network-Daily (GHCN-D) for 1949–2003. From Kenyon and Hegerl (2010).

have contributed to intensification of extreme precipi-
tation on the global scale.”

Few detection and attribution studies that include 
observations of temperature or precipitation extremes 
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Dole et al. 2010, GRL 
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Blocking and Extreme Heat Waves of Northern Europe  

Judith Perlwitz  2012, in preparation 



Climatological Summer Blocking in CMIP5 Models 
                  ° Dependency on Blocking Index 
                             °  Sensitivity to Anthropogenic Climate Change  

Masato,Hoskins and Woolings 2012 
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Fig. 5. Top row. 2-D daily frequency of blocking during summer for ERA-40, the multi-model mean

and twice the standard deviation of the set of model means. Bottom rows. 2-D daily blocking frequency

for all the models considered (see table 1 for details). Contours are every 0.05. The shading represents the

di↵erence between models and reanalysis.

33

250mb Z, Variable CBL (see Pelly&Hoskins 2003) 
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Abstract – We present a mathematical analysis of records drawn from independent random
variables with a drifting mean. To leading order the change in the record rate is proportional to
the ratio of the drift velocity to the standard deviation of the underlying distribution. We apply
the theory to time series of daily temperatures for given calendar days, obtained from historical
climate recordings of European and American weather stations as well as re-analysis data. We
conclude that the change in the mean temperature has increased the rate of record-breaking
events in a moderate but significant way: for the European station data covering the time period
1976–2005, we find that about 5 of the 17 high temperature records observed on average in 2005
can be attributed to the warming climate.

Copyright c© EPLA, 2010

Introduction. – In current media coverage the occur-
rence of record-breaking temperatures and other extreme
weather conditions is often associated with global climate
change. However, record-breaking events occur at a certain
rate in any stationary random process. In mathematical
terms, a record is an entry in a time series that is larger
(upper record) or smaller (lower record) than all previous
entries [1–3]. If the entries are independent and identically
distributed random variables drawn from a continuous
probability distribution, the probability Pn to observe a
new record after n steps, hereafter referred to as the record
rate, is simply Pn = 1/n, because all n values are equally
likely to be the largest. Applying this result to maximal
temperatures measured at a specific calendar day over a
time span of n years, it follows that the expected number
of records per year is 365/n, i.e. about 12 records for an
observation period of 30 years. Remarkably, this prediction
is entirely independent of the underlying probability distri-
bution, which may even differ for different calendar days.
Despite considerable current interest in extreme climate

events [4–14], the subject of climate records has received
relatively little attention. It is intuitively obvious that an
increase in the mean temperature will lead to an increased
occurrence of high temperature records, but attempts to
detect this effect in observational data have long remained
inconclusive [15–18]. Only very recently an empirical study
of temperature data from the U.S. found a significant effect

(a)E-mail: krug@thp.uni-koeln.de

Fig. 1: (Color online) Schematic of the evolution of the daily
temperature distribution under linear drift of the mean.

of warming on the relative occurrence of hot and cold
records [19].
Here we present a detailed analysis of several large

data sets of temperature measurements from both Ameri-
can and European weather stations, as well as re-analysis
data1. We find that the observed increase in the number of
high temperature records (and the corresponding decrease
in the low records) is well described by a minimal model
which assumes that the distribution of temperatures
measured on a given calendar day is a Gaussian with
constant standard deviation σ and a mean that increases
linearly in time at rate v (see fig. 1). This model is consis-
tent with previous findings [18,20–23] and it is supported

1The re-analysis approach combines meteorological observations
from a variety of sources with advanced data assimilation techniques
in order to create a continuous stream of observables on a three-
dimensional grid, see [20] for details.

30008-p1
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A Hypothesis for Record-breaking Temperatures in a Warming Climate 

Climate Change Conditioning of Event Occurrence 
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Characteristics of  Daily Maximum Temperatures: 1975-2005 G. Wergen and J. Krug

by our own analysis of the available data sets [24], see
fig. 2 for an example. While changes in temperature vari-
ability have also been argued to be important in the gener-
ation of extreme temperature events [5,7], we have failed to
detect a clear systematic trend in σ in the data (fig. 2(b)).
Moreover, the increase in the mean supersedes a possi-
ble effect on σ, in the sense that the former leads to
an asymptotically constant record rate [25–28] whereas
the latter only increases the record rate from 1/n to
(lnn)/n [29]. For these reasons we restrict ourselves to the
simplest setting of a temperature distribution of constant
shape and linearly increasing mean. Although temperature
fluctuations are well known to display long-term correla-
tions [30,31], the assumption that the daily temperatures
are not correlated is justified because individual measure-
ments in a time series are always one year apart (see [18]
and the quantitative discussion below).

Theory. – We begin by deriving an approximate
analytic expression for the increase in the record rate Pn
caused by a linear drift of the mean. In general, the record
rate for a sequence of independent but not identically
distributed random variables xn is given by [29]

Pn =

∫ ∞

−∞
fn(x)dx

n−1∏

k=1

(∫ x

−∞
dxkfk(xk)

)
, (1)

where fn(x) denotes the probability density at time step n.
Here we consider a drifting distribution of constant shape,
which implies fn(x) = f(x− vn) with a common density
f(x). This reduces (1) to

Pn =

∫ ∞

−∞
f(x)dx

n−1∏

k=1

(∫ x+vk

−∞
dxkf(xk)

)

. (2)

An explicit evaluation of (2) is possible for special choices
of f(x), but in general it is only known that Pn converges
to a nonzero limit P ∗ = limn→∞Pn when v > 0 [25–28]. In
the climate context the drift speed is expected to be small
compared to the standard deviation of the distribution.
We therefore expand (2) to linear order in v, which yields

Pn ≈
1

n
+
vn(n− 1)
2

∫ ∞

−∞
dxf2(x)Fn−2(x), (3)

where F (x) is the cumulative distribution function of f(x).
In [28] the integral in the second term is evaluated for
various elementary distributions. For distributions with a
power law tail one finds that the correction term decreases
for large n. On the other hand, for distributions that decay
faster than exponential, the correction term generally
increases with n. In the Gaussian case of interest here
the integral can be evaluated in closed form only for n= 2
and 3, with the result

P2 ≈
1

2
+

v

2
√
πσ
, P3 ≈

1

3
+
3v

4
√
πσ
. (4)

Fig. 2: (Color online) This figure summarizes the behavior of
the distribution of daily maximum temperatures for data set
EII. (a) Mean daily maximum temperature. Daily maximum
temperatures were averaged over all stations and the entire
calendar year. Diamonds show the average of dTmax for indi-
vidual years and the full line is a sliding 3-year average. The
regression line (dashed) shows a clear increase over the last 30
years. (b) Standard deviation of daily maximal temperatures.
To estimate the standard deviation, first a linear regression of
dTmax was carried out for each station and each calendar day.
The standard deviation for a given year was then computed
by averaging the squared deviation of dTmax from the linear
fit over all stations and all calendar years. The full line is a
3-year average and the dashed line the result of a linear regres-
sion. We find no systematic trend in the standard deviation.
(c) Distribution of daily temperatures on individual calen-
dar days. The measurements were detrended and normalized
for all time series individually and then accumulated. The
dashed line is the probability density of a standard normal
distribution.

30008-p2
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Testing Hypothesis for Record-breaking Temperatures in a Warming Climate G. Wergen and J. Krug

Fig. 4: (Color online) Mean record number at European
stations (1976–2005). Symbols show the average number of
upper (!) and lower (") records observed since 1976 at a
given calendar year in the forward time analysis. The dotted
line shows the prediction for a stationary climate, and dashed
lines show the prediction for a constant rate of warming.
The inset shows the results for the entire time span from 1976
to 2005.

measured daily record frequency for upper records of
dTmax, obtained both from a forward analysis (where
a record is the highest value of dTmax since 1906) and
from a backward analysis (where years are counted back-
wards in time and records are defined with respect to the
temperature in 2005). According to the prediction (5), the
forward and backward record rates should lie symmetri-
cally around the record rate 1/n of the stationary climate,
which is consistent with the displayed data. Throughout
the analyzed time span (with the exception of a short
period around 1960 in which the climate was effectively
cooling) the forward record frequency lies above the back-
ward record frequency. This shows that the increase in
the mean temperature significantly affects the statistics of
records. The effect is particularly pronounced during the
last two decades, where warming has been most signif-
icant (see the discussion of data set EII below). For the
year 2005, the measured forward record frequency is about
twice as large as expected for a stationary climate. Using
the mean warming rate estimated over the entire 100 yr
time period, only an enhancement of 40% is predicted by
eq. (5). This shows that the assumption of a constant rate
of warming is not a good approximation for data set EI.
Figure 3(b) displays the corresponding results for

data set EII. Since the rate of temperature increase was
relatively constant during this time period, we find good
quantitative agreement between the data and the model
predictions. The agreement is even more striking for the
mean record number displayed in fig. 4. In a stationary
climate the expected number of records observed over n
years is

Rn =
n∑

k=1

1

k
≈ lnn+ γ, (6)

where γ ≈ 0.5772156 . . . is the Euler-Mascheroni constant.
For a 30-year period this amounts to an expected record
number of 3.98, which is to be compared to the observed
number 4.24 for the upper records, and 3.66 for the lower
records of dTmax. Together figs. 3 and 4 provide a strong
validation of our model. Using our estimate v/σ= 0.014
for data set EII, eq. (5) predicts that the increase in mean
temperature has increased the rate of record occurrence
by about 40% over the time period from 1976–2005, which
implies an additional 5 out of 17 records per year in 2005.
Similar analyses were carried out for upper and lower

records of dTmin. We find that the mean record number of
dTmin behaves similar to the number of records of dTmax,
with 4.32 upper records and only 3.66 lower records. In
the backward time analysis we found 3.71 upper records
for dTmax and only 3.62 for dTmin. The number of lower
records was increased in the backward time analysis, which
is in agreement with the results for the upper records. In
summary, the number of lower records has decreased in the
same manner as the number of upper records has increased
(see fig. 3(b)).

American data and discreteness effects. – The
American data sets were extracted from a total of 1062
stations [22]. Requiring again a reliability of at least 95%,
we were left with 10 stations that recorded over the
125-year time span 1881–2005 (data set AI) and 207 stat-
ions that recorded over the 30-year time span 1976–2005
(data set AII). While the 10 stations of data set AI can be
assumed to be independent, the number of effectively
independent time series in data set AII is again much
smaller.
The result of the record analysis was similar to that

performed on the European data sets, with two impor-
tant differences. First, owing to the continental charac-
ter of the American climate, the standard deviation σ is
considerably larger than in Europe, which, according to
eq. (5), implies a weaker effect on the record rate. For
example, for data set AII we estimate a warming rate
of v= 0.025± 0.002 ◦C/yr and a standard deviation of
σ= 4.9± 0.1 ◦C, which yields a ratio v/σ that is only one
third of the value for data set EII.
Second, the American data were rounded to full degrees

Fahrenheit, whereas the European data were measured in
tenths of degrees Celsius. As a consequence, the probabil-
ity of ties is significant in the American data but negligi-
ble for the European data sets. Here we count only strong
records, which are broken only by a value that exceeds the
current record. To account for these discreteness effects
one computes the probability that a current record is tied
in the nth event. For a small unit of discretization d" σ,
this probability is given by P tien ≈ d/(σn). This leads to
the probability for a record event with discretization as
P dn ≈ (1− d/σ)/n, and summing over n the reduction of
the number of strong records due to ties in a stationary
climate is well described by [24]

Rdn ≈ (lnn+ γ)(1− d/σ)+ 2d/σ. (7)

30008-p4
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Reanalysis of Historical Climate Data for Key Atmospheric Features: 
Implications for Attribution of Causes of Observed Change

INTRODUCTION

Increasingly, climate scientists are being asked 
to go beyond descriptions of what the current 
climate conditions are and how they compare 
with the past, to also explain why climate is 
evolving as observed; that is, to provide at-
tribution of the causes for observed climate 
variations and change. 

Today, a fundamental concern for policy makers 
is to understand the extent to which anthropo-
genic factors and natural climate variations 
are responsible for the observed evolution of 
climate. A central focus for such efforts, as 
articulated in the Intergovernmental Panel on 
Climate Change (IPCC) Assessment Reports 
(IPCC, 2007a) has been to establish the cause, 
or causes, for globally averaged temperature in-
creases over roughly the past century. However, 
requests for climate attribution far transcend 

Figure 3.1  Schematic illustration of the datasets and modeling strategies for performing attribution. 
The map of North America on the right side displays a climate condition whose origin is in question. 
Various candidate causal mechanisms are illustrated in the right-to-left sequences of figures, together 
with the attribution tool. Listed above each in maroon boxes is a plausible cause that could be assigned 
to the demonstrated mechanism depending upon the diagnosis of forcing-response relationships derived 
from attribution methods. The efficacy of the first mechanism is tested, often empirically, by determin-
ing consistency with patterns of atmospheric variability, such as the teleconnection processes (climate 
anomalies over different geographical regions that are linked by a common cause) identifiable from 
reanalysis data. This step places the current condition within a global and historical context. The efficacy 
of the second mechanism tests the role of boundary forcings, most often with atmospheric models 
(e.g., Atmospheric Model Intercomparison Project, AMIP). The efficacy of the third mechanism tests 
the role of natural or anthropogenic influences, most often with linked ocean-atmosphere models. The 
processes responsible for the climate condition in question may, or may not, involve teleconnections, 
but may result from local changes in direct radiative effect on climate change or other near-surface 
forcing such as from land surface anomalies. The lower panels illustrate the representative processes: 
from left-to-right; time-evolving atmospheric carbon dioxide at Mauna Loa, Hawaii, the warming 
trend over several decades in tropical Indian Ocean/West Pacific warm pool sea surface temperatures 
(SSTs), the yearly SST variability over the tropical east Pacific due to the El Niño-Southern Oscillation 
(ENSO), the atmospheric pattern over the North Pacific/North America referred to as the Pacific 
North American (PNA) teleconnection.

Today, a fundamental 
concern for policy 

makers is to 
understand the 

extent to which 
anthropogenic 

factors and natural 
climate variations 

are responsible 
for the observed 

evolution of climate. 
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