
SOFTWARE METAPAPER

ABSTRACT
The Madden-Julian Oscillation (MJO) is a prominent feature of the intraseasonal
variability of the atmosphere. The MJO strongly modulates tropical precipitation
and has implications around the globe for weather, climate and basic atmospheric
research. The time-dependent state of the MJO is described by MJO indices, which are
calculated through sometimes complicated statistical approaches from meteorological
variables. One of these indices is the OLR-based MJO Index (OMI; OLR stands for
outgoing longwave radiation). The Python package mjoindices, which is described in
this paper, provides the first open source implementation of the OMI algorithm, to
our knowledge. The package meets state-of-the-art criteria for sustainable research
software, like automated tests and a persistent archiving to aid the reproducibility of
scientific results. The agreement of the OMI values calculated with this package and
the original OMI values is also summarized here. There are several reuse scenarios; the
most probable one is MJO-related research based on atmospheric models, since the
index values have to be recalculated for each model run.

CORRESPONDING AUTHOR:
Christoph G. Hoffmann

Institute of Physics, University
of Greifswald, Felix-Hausdorff-
Str. 6, 17489 Greifswald,
Germany

christoph.hoffmann@uni-
greifswald.de

KEYWORDS:
Madden-Julian Oscillation;
OLR-based MJO Index;
OMI; atmosphere; weather
forecasting; climate;
intraseasonal variation; Python

TO CITE THIS ARTICLE:
Hoffmann CG, Kiladis GN,
Gehne M, von Savigny C 2021
A Python Package to Calculate
the OLR-Based Index of the
Madden-Julian-Oscillation
(OMI) in Climate Science and
Weather Forecasting. Journal
of Open Research Software, 9:
9. DOI: https://doi.org/10.5334/
jors.331

CHRISTOPH G. HOFFMANN

GEORGE N. KILADIS

MARIA GEHNE

CHRISTIAN VON SAVIGNY

*Author affiliations can be found in the back matter of this article

A Python Package to
Calculate the OLR-Based
Index of the Madden-
Julian-Oscillation (OMI)
in Climate Science and
Weather Forecasting

mailto:christoph.hoffmann@uni-greifswald.de
mailto:christoph.hoffmann@uni-greifswald.de
https://doi.org/10.5334/jors.331
https://doi.org/10.5334/jors.331
https://orcid.org/0000-0003-2712-8648
https://orcid.org/0000-0001-6588-3762
https://orcid.org/0000-0002-7267-8676
https://orcid.org/0000-0001-7926-3986

2Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

(1) OVERVIEW
INTRODUCTION
The Madden-Julian Oscillation (MJO) is a prominent
feature of the Earth’s atmosphere-ocean system with a
high relevance for weather, climate and basic atmospheric
research. In order to explain the purpose and structure of
the software package introduced here, we first mention a
few meteorological key points of the MJO.

The Madden-Julian Oscillation
The MJO was described for the first time by [9] and
is characterized by a strong tropical convective
rainfall anomaly, which is perceptible as enhanced
cloudiness and precipitation. This disturbance appears
periodically in the Tropics over the Indian Ocean, then
travels eastward and decays over the Pacific. It is of
major relevance for variability in rainfall and wind in
large parts of the Tropics and is therefore one of the
most important recurring patterns of variability in the
Earth’s atmosphere-ocean system. Although the MJO
is primarily observable in these tropical regions, its
state has implications for many other locations in the
atmosphere, which is still a subject of current research
(e.g., temperature and dynamical features in the polar
regions and in higher atmospheric layers [3, 2, 14] or
modifications of extreme precipitation events over
northeast Africa, the Middle East, and eastern China
[5]. Reviews of the MJO are given in [15] and [16]. One
important aspect of the MJO is that it acts on the intra-
seasonal timescale (periods of 30–90 days) in contrast
to for example the well-known El Niño-Southern
Oscillation (ENSO), which acts on time scales of years. A
better understanding of the MJO is therefore not only of
interest for general atmospheric and climate research
but is also thought to be helpful for improving the
forecast skill of weather forecasts [16].

The passage of the convective anomaly from the
Indian Ocean to the Pacific is conventionally split into 8
temporal phases, roughly defined by the position of the
anomaly as shown in Figure 1. For each of these phases,
the weather at an individual tropical location tends to
have particular characteristics. However, such an ideally
clear definition of the phases and the corresponding
weather patterns for particular regions is difficult for
the real Earth, since the MJO pattern is superimposed
on all other kinds of natural variability on various time
scales from days to years (e.g., common weather
fluctuations, seasonal variations, the state of ENSO).
Hence, one recent aim of MJO research was to establish
statistical approaches, with which the state of the MJO
can be extracted from observed meteorological data as
objectively as possible in the form of time dependent
index values. Several indices have been formulated in the
past with the most important ones being the Real-time
Multivariate MJO index (RMM) [12] and the OLR-based
MJO index (OMI) [6].

MJO index OMI
The software package introduced here provides a
modern and sustainable reimplementation of the OMI
algorithm and we first outline the general approach of
the index calculation, before the software package itself
is introduced. For details on the underlying algorithm
see Kiladis et al. [6]. As with most of the MJO index
algorithms, the OMI calculation is based on a principal
component analysis (PCA, also known as empirical
orthogonal function analysis). The PCA is basically a
linear algebraic basis transformation. The new basis
vectors, called empirical orthogonal functions (EOFs), are
defined such that the first few of them cover most of the
variability in the dataset, which allows for neglecting the
other basis vectors and therefore reducing the amount

Figure 1 Depiction of the definition of the 8 MJO phases
according to the position of the convection anomaly. The figure
is taken from the original publication by Madden and Julian [9],
where more details can also be found.

https://doi.org/10.5334/jors.331

3Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

of data treated in the analysis. In the case of OMI, the
data to which the PCA is applied are temporally resolved
and filtered maps of OLR. The time dependency of the
data is then contained in time dependent coefficients
with respect to the EOFs, which are called the principal
components (PCs). Wilks [13] or other textbooks offer
a detailed description of the PCA in the context of the
atmospheric sciences. For OMI and other MJO indices
it turns out that only the first two EOFs are needed to
describe the MJO sufficiently [12, 6]. Hence, only two
PCs are needed to approximately cover the bulk of the
temporal and spatial evolution of the MJO. The values
of the time dependent PCs together with the associated
EOFs form the MJO index. Once the index has been
computed, the phase and the strength of the MJO can
be calculated from the PCs following simple rules [12].
Note that the calculation is somewhat more complicated
for OMI. To better represent the seasonal variations, the
PCA is not computed for the whole dataset at once,
but in a climatological sense for each day of the year
(DOY) separately. Hence, the PCA is executed 366 times
(including leap days) resulting in 366 pairs of EOFs. The
PCs for each particular date are then calculated using the
EOFs of the corresponding DOY [6].

While the RMM index is a good choice to conduct real-
time analyses of the MJO, OMI overcomes a few drawbacks
of RMM at the expense of the real-time capability [10, 6],
although a real-time version of OMI, called ROMI, is also
available [6]. Hence, OMI is a good choice for general MJO
research that does not depend on real time information
of the MJO. This applies for many research goals, e.g., the
improvement of the understanding of the MJO based on
retrospective analysis of meteorological data or based on
data of atmospheric models.

Ideas behind the reimplementation of OMI
In contrast to these widespread possible applications,
to our knowledge there is no publicly available software
to compute OMI from data. Only available is the official
description paper [6], which summarizes the general
properties of the algorithm, and a website (https://www.

esrl.noaa.gov/psd/mjo/, last access on 06/10/2020), which
provides the corresponding OMI values for the real-world
MJO evolution. The OMI index time series on this website
is extended sporadically, which makes this dataset
suitable for most MJO research based on retrospective
data (note that the values of the real-time version ROMI
are updated daily). However, this does not help for model
analyses, because the OMI index has to be recalculated
based on the modeled OLR instead of the real-world OLR
to get a consistent representation of the MJO in modeled
data.

Given the importance that OMI has gained in MJO
research there are collectively a number of reasons to
provide a quality-tested open source code to compute
OMI:

•	 Facilitate MJO research using the OMI index based on
modeled data.

•	 Facilitate MJO research based on real-world data
without being dependent on updates of the respective
web page (although the dependency on the
availability of the observational OLR data remains).

•	 Enable researchers to easily further understand the
characteristics of OMI by modifying an established
and tested version of the original OMI calculation
(which depends on some choices of thresholds etc.).
A recent example of such a case has been brought up
by Hoffmann and von Savigny [4], whereas a previous
example for the need to assess MJO index properties
is given by Wang et al. [11].

•	 Make OMI also conveniently available to all
researchers, whose research questions might involve
the MJO and who can be spared from the effort to
characterize the MJO themselves.

•	 Publish the source code as a special kind of technical
documentation of the rather complicated calculation
approach with 100%-coverage of all its details in
addition to the original publication [6].

•	 Check and demonstrate the reproducibility of the
involved and potentially error-prone statistical
approach as a contribution to good scientific practice.
(The reimplementation actually led to an update [7]
of the official description paper [6].)

The reimplementation in Python, which is presented here,
was motivated by two of the points listed above, particu-
larly the analysis of modeled data and the further investi-
gation of OMI characteristics. While the implementation
approach was at first solely based on the description
paper [6], it quickly turned out to be crucial to discuss the
implementation details directly with the designers of OMI
to speed up the development. Hence, a cooperation with
the original authors of [6] was established, who provided
not only these details, but also parts of the original code
and intermediate calculation results against which the
reimplementation could be tested. Overall, we realized
that it requires a considerable effort to understand and
reimplement the OMI calculation, so that it appears to be
worthwhile to share the code with the community. Hence,
we compiled the implementation in the Python package
mjoindices and added quality control mechanisms,
examples and documentation. The code includes the
complete processing chain: the preprocessing of the OLR
data, the calculation of the EOFs, the calculation of the
PCs, the post processing of the results, as well as I/O and
plotting utilities. The name of the package mjoindices
indicates that it is intended to include also the calculation
of other MJO indices. However, this is a long-term goal
and since the OMI calculation is of interest on its own, we
decided to publish the OMI calculation now.

Since the package has been released only recently,
there is so far no big community using it. However, there

https://www.esrl.noaa.gov/psd/mjo/
https://www.esrl.noaa.gov/psd/mjo/

4Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

are numerous research papers using OMI and we have
already gotten numerous requests regarding the usage
of the package prior to the release. In one case we have
already shared a preliminary version of the code.

IMPLEMENTATION AND ARCHITECTURE
The package structure is designed to be easily extendable
to other MJO indices in the future. Basic modules are
therefore placed directly in the mjoindices packages,
whereas modules specific for OMI are placed in the
mjoindices.omi sub-package.

Data handling
The basis for the data handling and all numerical
operations is the numpy package, especially the class
numpy.ndarray. Dates are treated consistently as
numpy.datetime64 objects.

There are four classes that handle the data exchange
between the mjoindices package and the calling code
developed by the users:

•	 The class mjoindices.olr_handling.OLRData
represents the input OLR data. The only code that
the users have to develop themselves in order to
run the package is actually a method that creates
an OLRData object filled with the three-dimensional
OLR dataset and the corresponding numerical grids
for latitude, longitude and time. This class is also
internally used to represent intermediate results of
the OLR preprocessing.

The other three classes represent the calculation results:

•	 A calculated pair of EOFs and associated statistical
diagnostic quantities are stored in mjoindices.
empirical_orthogonal_functions.EOFData.

•	 The list of all 366 pairs of EOFs is stored in
mjoindices.empirical_orthogonal_functions.
EOFDataForAllDOYs.

•	 The PC time series, which is the basic output that repre-
sents the temporal evolution of the MJO, is represented
by mjoindices.principal_components.PCData

All these classes come with routines for I/O and basic
diagnostic plots.

Note that it is in principle possible to provide the OLR
data on freely chosen spatial and temporal grids as
input for the OMI calculation. However, the original OMI
calculation has been performed on spatial grids with a
spacing of 2.5° between 20° S and 20° N in latitude and
0° to 360° in longitude as well as daily averages in the
time domain [6]. Although it might be expected that the
algorithm returns consistent values over a wider range
of spatial resolutions (particularly for higher resolutions),
this has not been rigorously tested. Hence, it is highly
recommended that the users either provide the OLR data

on the original grid or at least carefully confirm that the
characteristics of the index calculated on a different grid
are similar to those of the original OMI values.

Implementation of the OMI algorithm
The calculation of the OMI EOFs and PCs itself is
implemented in the module mjoindices.omi.omi_
calculator. The EOF calculation is more complex
than the calculation of the PCs and is separated into a
preprocessing of the OLR data, the execution of the PCA
and a post processing of the resulting EOFs. These steps
are callable separately to evaluate intermediate results,
however in most cases all steps will be executed together,
which is done by the method calc_eofs_from_olr().

The preprocessing consists of a temporal and spatial
filtering of the input data. This is actually a rather
involved centerpiece of the OMI calculation and has been
implemented in the separate module mjoindices.omi.
wheeler_kiladis_mjo_filter, which should, however,
not be relevant for the end-users.

For the PCA step, two different implementations can
be chosen via an argument of the method call: the
internal implementation, which follows the description
by Kutzbach [8] or the implementation in an external
Python package, namely the eofs package described
by Dawson [1]. There is no noteworthy difference in
the results between both variants, as the usage of
the external package has originally been included to
validate the internal implementation. The internal
implementation now remains in the code to have a self-
contained and fully understandable package for the OMI
calculation, so it is more for purposes of documentation.
Using the external general PCA package instead promises
perhaps to be a higher performance implementation in
terms of computation time. Overall, the differences are
marginal and the users will probably simply use the
external package without further considerations.

The post processing consists of two pragmatic steps,
introduced in the original calculation of OMI. First, the
signs of the EOFs calculated by the PCA are arbitrary. This
means that the signs may switch from one DOY to another,
which is undesirable. Therefore, the signs of all 366 pairs of
EOFs are aligned after their computation as the first step,
i.e. arbitrary sign reversals of EOFs between neighboring
DOYs will be removed. Note that this post processing step
might cause problems if the calculation is not performed
on the original spatial grids. In this case, the users should
call the preprocessing and the PCA calculation separately
and then implement individual post processing solutions
themselves if needed at all. Second, it was found that
reasonable EOFs for some DOYs at the beginning of
November were difficult to obtain [6], so that they were
replaced by an interpolation between the EOFs for the DOYs
293 and 316 (Note that the range was stated differently
in Kiladis et al. [6] and has been corrected as a result of
the reimplementation described here). This interpolation

5Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

was also included in this package to achieve compatability
with the original index. However, it is probably specific to
the calculation based on the observational OLR dataset
and might either be unnecessary or only be relevant for a
different period in the case of other datasets. Hence, this
post processing step is configurable and each user has to
consider the application depending on the specific case.

Relation to the original OMI implementation
The reimplementation presented here should not be
understood as a one-to-one porting of the original
code. Instead, it is essentially a new implementation
following the statistical steps described in Kiladis et
al. [6]. This means that the computation results will
slightly differ due to both, numerical artifacts and
differences in the implementation details (note that one
advantage of a completely independent implementation
is that it challenges the reproducibility of the scientific
description during the implementation process). The
still very high degree of the agreement between the
new implementation and the results of Kiladis et al. [6]
will be outlined below together with the quality control
description. In addition, the complete code for the
recalculation of the original OMI values and the validation
is included as an example in the package so that it can
be executed by the users to evaluate the differences in
detail themselves.

One subtle detail, probably responsible for a part of
any differences in the results obtained, is the treatment of
leap years in the selection of the data samples. We have
included two options in the code, which are selectable
for the users with the keyword argument strict_leap_
year_treatment of the respective functions. The first
option (strict_leap_year_treatment=False), which
is the default, leads to results which are closer to the
original values, however, the treatment of leap years has
a practical aspect (explaining the details would be beyond
the scope of this overview, but a respective comment is
included in the documentation of the code). The second
option (strict_leap_year_treatment=True) uses the
modern numpy date-time routines to treat the leap years
more explicitly at the expense of the agreement with
the original values. Although we have decided to include
both options and leave the choice to the users, we note
the second option has to be used with care; the EOFs for
DOY 366 may strongly differ from those of DOY 365 and
DOY 1, which may produce unwanted jumps in the PC
time series. In any case, we emphasize that neither of the
implementations is necessarily identical to the original
code, but the results of both are very close to the original
based on the results of our evaluation (see below).

Conceptual separation of the core package and
additional material
For convenience, the package is listed in the Python package
index (https://pypi.org/project/mjoindices/), so that it can be

installed with common Python package managers like pip.
However, this Python package in the narrower sense only
contains the operational code itself, but neither the test
suite nor the examples. Those are available together with
the complete source code and the documentation in the
broader sense of the Python package on GitHub or Zenodo
(see below) and can be run with the installed package.

QUALITY CONTROL
Manual evaluation of calculated OMI values using
example code
The package includes a basic example, which is available as
a common Python script (recalculate_original_omi.py)
or as a Jupyter Notebook file (recalculate_original_omi.
ipynb). It recalculates the original OMI values, i.e., executes
the reimplemented algorithm with the original input files.
Hence, this example not only shows how the package is
used, but also provides a direct comparison of the original
and the recalculated OMI values. This basic comparison
is extended by the script evaluate_omi_reproduction.
py (or evaluate_omi_reproduction.ipynb, respectively),
which provides a more detailed comparison. This script
does not run the OMI algorithm again, but only analyzes
the previously recalculated and saved values in more
detail. Overall, the users can use both scripts to become
familiar with the usage of the package, but they can also
judge the degree of agreement with the original values. As
stated before, a perfect agreement is not expected, since
the implementation is not a one-to-one port of the original
code. Instead, the expected tolerances are described
below. This description also allows for a comparison with
the individual calculations performed by the users to judge
the performance of their local installations. Note that the
input data and also the original OMI dataset have to be
downloaded from the official websites or Zenodo (see
below) before running the example. Respective information
and links are given in the upper part of the example code.

Automated testing
The software quality control includes three levels of
automated testing routines, which are based on the pytest
framework. First, many functions are routinely tested using
unit tests. These unit tests cover those classes, which
provide simple and self-contained functionality apart from
the main numerical calculation, i.e. the classes used for
the data handling and respective I/O routines. These tests
are mainly based on hard-coded simple sample data, for
which the expected operation results should be obvious.
Second, an integration test validates the results of the
complete calculation chain against the original OMI data.
Since slight deviations are expected, the test operates
with specific tolerances, which are specified below. Third,
another integration test validates the complete calculation
chain against OMI values, which were previously
computed using the mjoindices.omi package itself.
Hence, equivalence of the results is expected here, so that

https://pypi.org/project/mjoindices/

6Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

this test will guarantee the stability of the results in case of
installations on different systems or code changes. Note
that both integration tests are implemented in one routine
to save computing time during the test execution. Note
further that some data files, which are not included in the
package, have to be downloaded before the integration
tests can be executed. These files are permanently available
at Zenodo (https://doi.org/10.5281/zenodo.3746563). Details
are given in a specific Readme document, which is included
in the test suite (basically, this concerns similar external
files, as are needed for the examples described above).

Quantitative comparison of recalculated and
original OMI values
As stated before, the code in the mjoindices package
is a new implementation and not a one-to-one port of

the original code, so that slight deviations between the
results of both implementations have to be expected. As
a reference, some basic comparison results are discussed
here. This information can also be used to compare it to
the local output of the example code, which produces
similar figures, among others. In addition, the following
figures also describe the tolerances accepted by the
respective integration test mentioned before. Note that
the comparison results depend slightly on the calculation
setup, particularly the treatment of leap years (see above).
All figures are based on calculations with the setting
strict_leap_year_treatment=False, which is closer
to the original and is the default setting. In contrast, the
Tables 1 and 2 show results for both settings. In this case
the comparison statistics are shown for both including
and excluding DOY 366, which is the DOY that shows the

Table 1 Comparison of recalculated and original EOFs summarized over all DOYs. Note that we did not include numbers for the
setup “strict leap year treatment/DOY 366 included”, since these numbers are only determined by the EOFs of DOY 366, which is
intentionally different from the original. Hence, no conclusion on the overall agreement can be drawn from these numbers.

EOF INDICATOR LEAP YEAR TREATMENT DOY 366 VALUE

1 Correlation not strict both >0.994

2 Correlation not strict both >0.993

1 99% percentile not strict both <0.0084 W/m2

2 99% percentile not strict both <0.0065 W/m2

1 Correlation strict excluded >0.994

2 Correlation strict excluded >0.993

1 99% percentile strict excluded <0.0084 W/m2

2 99% percentile strict excluded <0.0065 W/m2

PC INDICATOR LEAP YEAR TREATMENT DOY 366 VALUE

1 Correlation not strict both >0.998

2 Correlation not strict both >0.998

1 Std.-Dev. of difference not strict both <0.0458

2 Std.-Dev. of difference not strict both <0.0488

1 99% percentile not strict both <0.157

2 99% percentile not strict both <0.1704

1 Correlation strict excluded >0.998

2 Correlation strict excluded >0.998

1 Std.-Dev. of difference strict excluded <0.0449

2 Std.-Dev. of difference strict excluded <0.0484

1 99% percentile strict excluded <0.1523

2 99% percentile strict excluded <0.1671

1 Correlation strict included >0.998

2 Correlation strict included >0.998

1 Std.-Dev. of difference strict included <0.0509

2 Std.-Dev. of difference strict included <0.0501

1 99% percentile strict included <0.1552

2 99% percentile strict included <0.1708

Table 2 Comparison of recalculated and original PCs considering the complete period of the available original data (01/01/1979 to
28/08/2018).

https://doi.org/10.5281/zenodo.3746563

7Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

most pronounced deviation compared to the original
data when using strict_leap_year_treatment=True.

Figure 2 shows the EOF functions 1 and 2 for
two selected DOYs. Shown is one example, which is
representative for the best agreement (DOY 23), and one,
which is representative for the worst agreement (DOY
218). For the worst case, the visual resemblance of the
original and the recalculated EOFs is also obvious and it
is seen that the magnitude of the deviation is small for
both examples.

Figure 3 provides a quantitative overview of the
agreement of the EOFs 1 and 2 for all DOYs based on
different statistical values: The correlation of the EOFs

(upper panel), the mean and the standard deviation
of the differences between the EOFs (the two panels in
the middle), and different percentiles of the absolute
differences between the EOFs (bottom panel). In
particular the correlation, which varies between 0.994
and 0.999, shows that the agreement is nearly optimal
for all DOYs, including the previously called worst cases.
The other numbers have to be seen in the context of the
total magnitude of the EOFs (which can be estimated
from Figure 2) and also indicate satisfying agreement.
Note that the meaning of, e.g., the 99% percentile is that
99% of the absolute differences between the original and
the recalculated EOFs are lower than the stated number.

Figure 2 Examples of recalculated EOFs in comparison to the original EOFs for DOY 23, which is among the DOYs with the best
agreement, and DOY 218, which has the worst agreement. Note that the color scale of the panels with the differences varies.

https://doi.org/10.5334/jors.331

8Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

Table 1 summarizes the minimum agreement, which
can be expected for the individual EOFs, considering
all DOYs. In other words, these numbers indicate the
maximum tolerance that must conservatively be
allowed if the EOFs for each DOY are not assessed
individually. This is also done in the respective
integration test, so that these numbers state the test
tolerances.

Figure 4 shows the recalculated and the original
time series of the PCs 1 and 2 for the year 2011,
which has been arbitrarily chosen. The PC time series
contain the principal information on the temporal
evolution of the MJO and are therefore of major
interest for the users. Visually, almost no difference
between the original and the recalculated values can
be seen. This is confirmed by Table 2, which summarizes
the agreement between the PC time series for the
complete period (01/01/1979 to 28/08/2018), for
which the original data was available at the time of the
implementation.

(2) AVAILABILITY
OPERATING SYSTEM
Tested on Ubuntu 18.04 Linux and Windows 10.

Figure 3 Detailed comparison statistics for the EOFs of all DOYs. See text for details.

Figure 4 Comparison of the recalculated and original PCs for an
arbitrarily chosen sample period (the year 2011).

9Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

PROGRAMMING LANGUAGE
Python > = 3.6 (tested with Python 3.6, 3.7, and 3.8)

ADDITIONAL SYSTEM REQUIREMENTS
There are no special hardware requirements in addition
to a state-of-the-art personal computer system (e.g.,
1.5 GHz Processor, 8 GB memory, a few GB free disk
space). The complete algorithm will run for a few hours
on such a system.

DEPENDENCIES
The package depends on the following standard Python
packages. These can be installed using common Python
package managers (e.g., pip) and will usually also be
automatically installed along with mjoindices.

•	 numpy, version >= 1.17.0
•	 matplotlib, version >= 3.1.1
•	 pandas, version >= 0.25
•	 scipy, version >= 1.3.0

In order to run the unit and integration tests, the
following package is needed:

•	 pytest, version >= 5.0.1

To have the possibility to use an external implementation
of the PCA as described before, the following package
can be installed:

•	 eofs, version >= 1.4.0

Some of the unit and integration tests depend on external
datasets, which serve either as input or as reference for
the results. These datasets are also permanently availa-
ble from Zenodo (https://doi.org/10.5281/zenodo.3746563).
They have to be downloaded and saved into a particular
directory before these tests can be successfully executed.
Details are given in a Readme document, which is part of
the test suite. Also the examples need these or similar
files. In this case, the description of the necessary files is
found in the source code documentation of the examples.

LIST OF CONTRIBUTORS
•	 Christoph G. Hoffmann (University of Greifswald,

Germany) has written the code and led the project.
•	 George N. Kiladis (NOAA/Physical Sciences Laboratory,

Boulder, Colorado) has contributed code samples as
a reference (which are not included in the package)
and discussed several implementation issues.

•	 Maria Gehne (CIRES, University of Colorado Boulder,
and NOAA/Physical Sciences Laboratory, Boulder,
Colorado) has tested the package from the
perspective of the original designers of OMI.

•	 Juliana Dias (CIRES, University of Colorado Boulder,
and NOAA/Physical Sciences Laboratory, Boulder,
Colorado) has provided a file with reference data.

•	 Christian von Savigny (University of Greifswald,
Germany) has contributed to the discussion of the
general approach.

SOFTWARE LOCATION
Archive

Name: Zenodo
 Persistent identifier: https://doi.org/10.5281/zenodo.395

7857

Licence: GNU General Public License v3.0
Publisher: Christoph G. Hoffmann
Version published: 1.2.0
Date published: 23/07/2020

Code repository
Name: GitHub
 Persistent identifier: https://github.com/cghoffmann/

mjoindices

Licence: GNU General Public License v3.0
Date published: 23/07/2020

LANGUAGE
The language of the code and the documentation is
English.

(3) REUSE POTENTIAL

The reimplementation of the OMI algorithm as open
source code can be helpful for climate, weather, and
basic atmospheric research in diverse aspects as has
been outlined in the introduction. This also includes
documentation aspects and good scientific practice.

The primary reuse case of the package in terms of
actually running the code to calculate OMI values consists
of the analysis of the MJO behavior in complex models of the
atmosphere. The major point is that it will be necessary to
recalculate OMI for the atmospheric conditions simulated
by a specific model to get a consistent representation of
the MJO in that particular model. Due to the chaotic nature
of the Earth’s atmosphere even an ideal numerical model
would not able to precisely reproduce the Earth’s weather
at a particular point in space and time for many days
after its initialization. Hence, although state-of-the-art
atmospheric models produce realistic weather patterns
and realistic climatological conditions (in the sense of
large-scale and long-term averaging), the conditions for
individual periods and locations cannot be reasonably
compared to the real world for long-term runs. This
implies that it is impossible to use the original OMI index
calculated for the real world based on OLR observations
to also describe the MJO in a modeled atmosphere. Put
in other words, each MJO-related study based on free
running atmospheric models has to recompute the OMI
index for each model run based on the modeled OLR data
to get a consistent representation. This is easily possible
with the presented Python package. Given the various
atmospheric models (of which all are run with many

https://doi.org/10.5281/zenodo.3746563
https://doi.org/10.5281/zenodo.3957857
https://doi.org/10.5281/zenodo.3957857
https://github.com/cghoffmann/mjoindices
https://github.com/cghoffmann/mjoindices

10Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

different setups depending on the particular science
questions) and the rising awareness of the relevance of
the MJO for tropical and extra-tropical meteorology, we
expect a high reuse potential, as long as the community
becomes aware of the existence of this code.

A more specific reuse case is to understand the
characteristics of OMI itself. This knowledge can become
useful, when subtle interactions between the MJO
and other processes in the earth system are studied.
In this case, it must be considered that the particular
representation of the MJO (here OMI) influences the
results. For this, it can be helpful to be able to recompute
OMI with slight modifications, e.g., with different values
for the filter constants of the bandpass filter. We do
not expect, however, that these individual exploratory
variations of the implementation should feed back
into the basic source code, as the basic code should
unambiguously represent the original documented and
scientifically approved OMI algorithm.

CONTRIBUTIONS
We expect that the results, which are produced by the
package, will be stable right from the outset, since
all major features for the complete reproduction of
OMI have already been implemented and tested.
Nevertheless, we welcome contributions to the code,
such as code optimizations or implementations of other
MJO indices. These contributions will also have to meet
the high quality standards in terms of automated testing
etc. to keep the results stable and scientifically reliable.
For contributions and questions, we can be contacted
using the project’s GitHub page (e.g., “Pull requests” and
“Issues”) and the author contacts of this manuscript.

ACKNOWLEDGEMENTS

We thank Alejandro Jaramillo Moreno for fruitful
discussions on the implementation of the Wheeler-
Kiladis-Filter in Python and Rattana Chhin for beta-testing
the package. We would like to thank the two reviewers
for their valuable comments on the manuscript and
the software. We acknowledge support for the Article
Processing Charge from the DFG (German Research
Foundation, 393148499) and the Open Access Publication
Fund of the University of Greifswald.

FUNDING STATEMENT

This work was supported by the University of Greifswald.

COMPETING INTERESTS

The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Christoph G. Hoffmann orcid.org/0000-0003-2712-8648
Institute of Physics, University of Greifswald, Felix-Hausdorff-
Str. 6, 17489 Greifswald, Germany

George N. Kiladis orcid.org/0000-0001-6588-3762
NOAA/Physical Sciences Laboratory, Boulder, Colorado, USA

Maria Gehne orcid.org/0000-0002-7267-8676
CIRES, University of Colorado Boulder, and NOAA/Physical
Sciences Laboratory, Boulder, Colorado, USA

Christian von Savigny orcid.org/0000-0001-7926-3986
Institute of Physics, University of Greifswald, Felix-Hausdorff-
Str. 6, 17489 Greifswald, Germany

REFERENCES

1. Dawson A. Eofs: A Library for EOF Analysis of Meteoro-

logical, Oceanographic, and Climate Data. J. Open Res.

Softw. 2016; 4(1): e14. DOI: https://doi.org/10.5334/jors.122

2. Garfinkel CI, Benedict JJ, Maloney ED. Impact of the MJO

on the boreal winter extratropical circulation. Geophys.

Res. Lett. 2014; 41(16): 6055–6062. DOI: https://doi.

org/10.1002/2014GL061094

3. Garfinkel CI, Feldstein SB, Waugh DW, Yoo C, Lee

S. Observed connection between stratospheric

sudden warmings and the Madden-Julian Oscillation.

Geophys. Res. Lett. 2012; 39(18). DOI: https://doi.

org/10.1029/2012GL053144

4. Hoffmann CG, von Savigny C. Indications for a potential

synchronization between the phase evolution of the

Madden-Julian oscillation and the solar 27-day cycle.

Atmos. Chem. Phys. 2019; 19(7): 4235–4256. DOI: https://

doi.org/10.5194/acp-19-4235-2019

5. Jones C, Waliser DE, Lau KM, Stern W. Global Occurrences

of Extreme Precipitation and the Madden-Julian Oscillation:

Observations and Predictability. J. Climate. 2004; 17(23):

4575–4589. DOI: https://doi.org/10.1175/3238.1

6. Kiladis GN, Dias J, Straub KH, Wheeler MC, Tulich SN,

Kikuchi K, Weickmann KM, Ventrice MJ. A Comparison of

OLR and Circulation-Based Indices for Tracking the MJO.

Mon. Wea. Rev. 2014; 142(5): 1697–1715. DOI: https://doi.

org/10.1175/MWR-D-13-00301.1

7. Kiladis GN, Dias J, Straub KH, Wheeler MC, Tulich SN,

Kikuchi K, Weickmann KM, Ventrice MJ. CORRIGENDUM.

Mon. Wea. Rev. 2020; 148(2): 875–876. DOI: https://doi.

org/10.1175/MWR-D-19-0385.1

8. Kutzbach JE. Empirical Eigenvectors of Sea-Level

Pressure, Surface Temperature and Precipitation

Complexes over North America. J. Appl. Meteor. 1967;

6(5): 791–802. DOI: https://doi.org/10.1175/1520-

0450(1967)006<0791:EEOSLP>2.0.CO;2

9. Madden RA, Julian PR. Description of Global-Scale

Circulation Cells in the Tropics with a 40–50 Day Period.

J. Atmos. Sci. 1972; 29(6): 1109–1123. DOI: https://doi.

org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.

CO;2

https://orcid.org/0000-0003-2712-8648
https://orcid.org/0000-0003-2712-8648
https://orcid.org/0000-0001-6588-3762
https://orcid.org/0000-0001-6588-3762
https://orcid.org/0000-0002-7267-8676
https://orcid.org/0000-0002-7267-8676
https://orcid.org/0000-0001-7926-3986
https://orcid.org/0000-0001-7926-3986
https://doi.org/10.5334/jors.122
https://doi.org/10.1002/2014GL061094
https://doi.org/10.1002/2014GL061094
https://doi.org/10.1029/2012GL053144
https://doi.org/10.1029/2012GL053144
https://doi.org/10.5194/acp-19-4235-2019
https://doi.org/10.5194/acp-19-4235-2019
https://doi.org/10.1175/3238.1
https://doi.org/10.1175/MWR-D-13-00301.1
https://doi.org/10.1175/MWR-D-13-00301.1
https://doi.org/10.1175/MWR-D-19-0385.1
https://doi.org/10.1175/MWR-D-19-0385.1
https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2
https://doi.org/10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2
https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2

11Hoffmann et al. Journal of Open Research DOI: 10.5334/jors.331

10. Straub KH. MJO Initiation in the Real-Time Multivariate

MJO Index. J. Climate. 2013; 26(4): 1130–1151. DOI:

https://doi.org/10.1175/JCLI-D-12-00074.1

11. Wang S, Ma D, Sobel AH, Tippett MK. Propagation

Characteristics of BSISO Indices. Geophys. Res. Lett.

2018; 45(18): 9934–9943. DOI: https://doi.org/10.1029/

2018GL078321

12. Wheeler MC, Hendon HH. An All-Season Real-Time

Multivariate MJO Index: Development of an Index

for Monitoring and Prediction. Mon. Wea. Rev. 2004;

132(8): 1917–1932. DOI: https://doi.org/10.1175/1520-

0493(2004)132<1917:AARMMI>2.0.CO;2

13. Wilks D. Chapter 12 – Principal Component (EOF) Analysis.

In: Wilks DS (ed.), Statistical Methods in the Atmospheric

Sciences, Vol. 100 of International Geophysics. 2011; 100:

519–562. Academic Press. DOI: https://doi.org/10.1016/

B978-0-12-385022-5.00012-9

14. Yang C, Li T, Smith AK, Dou X. The Response of the

Southern Hemisphere Middle Atmosphere to the

Madden-Julian Oscillation during Austral Winter Using

the Specified-Dynamics Whole Atmosphere Community

Climate Model. J. Climate. 2017; 30(20): 8317–8333. DOI:

https://doi.org/10.1175/JCLI-D-17-0063.1

15. Zhang C. Madden-Julian Oscillation. Rev. Geophys. 2005;

43(2): RG2003. DOI: https://doi.org/10.1029/2004RG 000158

16. Zhang C. Madden-Julian Oscillation: Bridging Weather and

Climate. Bull. Amer. Meteor. Soc. 2013; 94(12): 1849–1870.

DOI: https://doi.org/10.1175/BAMS-D-12-00026.1

TO CITE THIS ARTICLE:
Hoffmann CG, Kiladis GN, Gehne M, von Savigny C 2021 A Python Package to Calculate the OLR-Based Index of the Madden-Julian-
Oscillation (OMI) in Climate Science and Weather Forecasting. Journal of Open Research Software, 9: 9. DOI: https://doi.org/10.5334/
jors.331

Submitted: 20 April 2020 Accepted: 13 April 2021 Published: 14 May 2021

COPYRIGHT:
© 2021 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0
International License (CC-BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original
author and source are credited. See http://creativecommons.org/licenses/by/4.0/.

Journal of Open Research Software is a peer-reviewed open access journal published by Ubiquity Press.

https://doi.org/10.5334/jors.331
https://doi.org/10.1175/JCLI-D-12-00074.1
https://doi.org/10.1029/2018GL078321
https://doi.org/10.1029/2018GL078321
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1175/1520-0493(2004)132<1917:AARMMI>2.0.CO;2
https://doi.org/10.1016/B978-0-12-385022-5.00012-9
https://doi.org/10.1016/B978-0-12-385022-5.00012-9
https://doi.org/10.1175/JCLI-D-17-0063.1
https://doi.org/10.1029/2004RG000158
https://doi.org/10.1175/BAMS-D-12-00026.1
https://doi.org/10.5334/jors.331
https://doi.org/10.5334/jors.331
http://creativecommons.org/licenses/by/4.0/

